Kevin W H Kwok

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8743276/publications.pdf

Version: 2024-02-01

38 papers 1,511 citations

331538 21 h-index 35 g-index

39 all docs

39 docs citations

39 times ranked

2046 citing authors

#	Article	IF	Citations
1	Effects of ferulic acid on muscle development and intestinal microbiota of zebrafish. Journal of Animal Physiology and Animal Nutrition, 2022, 106, 429-440.	1.0	14
2	Selenium Nanoparticles (SeNPs) Immunomodulation Is More Than Redox Improvement: Serum Proteomics and Transcriptomic Analyses. Antioxidants, 2022, 11, 964.	2.2	13
3	Aconitine disrupts serotonin neurotransmission via 5â€hydroxytryptamine receptor in zebrafish embryo. Journal of Applied Toxicology, 2021, 41, 483-492.	1.4	13
4	Mass spectrometry-based untargeted metabolomics approach for differentiation of beef of different geographic origins. Food Chemistry, 2021, 338, 127847.	4.2	37
5	Tilapia dsRNA-activated protein kinase R (PKR): An interferon-induced antiviral effector with translation inhibition activity. Fish and Shellfish Immunology, 2021, 112, 74-80.	1.6	5
6	Molecular characterization and expression of CD96 in Nile tilapia (Oreochromis niloticus) in response to different pathogens stimulus. Aquaculture Reports, 2021, 20, 100705.	0.7	1
7	Finding Species-Specific Extracellular Surface-Facing Proteomes in Toxic Dinoflagellates. Toxins, 2021, 13, 624.	1.5	O
8	Conservation of structural and interactional features of CD226 and Necl5 molecules from Nile tilapia (Oreochromis niloticus). Fish and Shellfish Immunology, 2021, 116, 74-83.	1.6	0
9	Improved Raman spectroscopy-based approach to assess microplastics in seafood. Environmental Pollution, 2021, 289, 117648.	3.7	35
10	Molecular characterization and expression of CD48 in Nile tilapia (Oreochromis niloticus) in response to different stimulus. Fish and Shellfish Immunology, 2020, 97, 515-522.	1.6	8
11	Unique duplication of IFNh genes in Nile tilapia (Oreochromis niloticus) reveals lineage-specific evolution of IFNh in perciform fishes. Fish and Shellfish Immunology, 2020, 107, 36-42.	1.6	6
12	Chiral toxicity of muscone to embryonic zebrafish heart. Aquatic Toxicology, 2020, 222, 105451.	1.9	14
13	Sunscreens containing zinc oxide nanoparticles can trigger oxidative stress and toxicity to the marine copepod Tigriopus japonicus. Marine Pollution Bulletin, 2020, 154, 111078.	2.3	33
14	Dietary chitosan-selenium nanoparticle (CTS-SeNP) enhance immunity and disease resistance in zebrafish. Fish and Shellfish Immunology, 2019, 87, 449-459.	1.6	42
15	Comparison of temperate and tropical freshwater species' acute sensitivities to chemicals: An update. Integrated Environmental Assessment and Management, 2019, 15, 352-363.	1.6	16
16	Influences of temperature and salinity on physicochemical properties and toxicity of zinc oxide nanoparticles to the marine diatom Thalassiosira pseudonana. Scientific Reports, 2017, 7, 3662.	1.6	43
17	Silver nanoparticle toxicity is related to coating materials and disruption of sodium concentration regulation. Nanotoxicology, 2016, 10, 1306-1317.	1.6	40
18	Parental dietary seleno-L-methionine exposure and resultant offspring developmental toxicity. Aquatic Toxicology, 2016, 170, 187-198.	1.9	19

#	Article	IF	CITATIONS
19	Salinity-dependent toxicities of zinc oxide nanoparticles to the marine diatom Thalassiosira pseudonana. Aquatic Toxicology, 2015, 165, 31-40.	1.9	73
20	Copepods as References Species in Estuarine and Marine Waters. , 2015, , 281-308.		13
21	Developmental toxicity and DNA damage from exposure to parking lot runoff retention pond samples in the Japanese medaka (Oryzias latipes). Marine Environmental Research, 2014, 99, 117-124.	1.1	8
22	The difference between temperate and tropical saltwater species' acute sensitivity to chemicals is relatively small. Chemosphere, 2014, 105, 31-43.	4.2	54
23	Sediment quality guidelines: challenges and opportunities for improving sediment management. Environmental Science and Pollution Research, 2014, 21, 17-27.	2.7	66
24	Using whole mount in situ hybridization to examine thyroid hormone deiodinase expression in embryonic and larval zebrafish: A tool for examining OH-BDE toxicity to early life stages. Aquatic Toxicology, 2013, 132-133, 190-199.	1.9	59
25	The effects of model polysiloxane and fouling-release coatings on embryonic development of a sea urchin (Arbacia punctulata) and a fish (Oryzias latipes). Aquatic Toxicology, 2012, 110-111, 162-169.	1.9	16
26	Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): Effect of coating materials. Aquatic Toxicology, 2012, 120-121, 59-66.	1.9	105
27	Chronic toxicity of double-walled carbon nanotubes to three marine organisms: influence of different dispersion methods. Nanomedicine, 2010, 5, 951-961.	1.7	57
28	Integrated Stochastic Environmental Risk Assessment of the Harbour Area Treatment Scheme (HATS) in Hong Kong. Environmental Science & Environmental Sc	4.6	26
29	Acclimation effect and fitness cost of copper resistance in the marine copepod Tigriopus japonicus. Ecotoxicology and Environmental Safety, 2009, 72, 358-364.	2.9	67
30	Relative Sensitivity Distribution of Freshwater Planktonic Crustaceans to Trace Metals. Human and Ecological Risk Assessment (HERA), 2009, 15, 1335-1345.	1.7	15
31	Deriving siteâ€specific sediment quality guidelines for Hong Kong marine environments using fieldâ€based species sensitivity distributions. Environmental Toxicology and Chemistry, 2008, 27, 226-234.	2.2	46
32	Toxicities of antifouling biocide Irgarol 1051 and its major degraded product to marine primary producers. Marine Pollution Bulletin, 2008, 57, 575-586.	2.3	39
33	Copper toxicity in the marine copepod Tigropus japonicus: Low variability and high reproducibility of repeated acute and life-cycle tests. Marine Pollution Bulletin, 2008, 57, 632-636.	2.3	58
34	Synergistic toxic effects of zinc pyrithione and copper to three marine species: Implications on setting appropriate water quality criteria. Marine Pollution Bulletin, 2008, 57, 616-623.	2.3	71
35	A Bayesian Mixture Model for Estimating Intergeneration Chronic Toxicity. Environmental Science & Eamp; Technology, 2008, 42, 8108-8114.	4.6	4
36	The copepod Tigriopus: A promising marine model organism for ecotoxicology and environmental genomics. Aquatic Toxicology, 2007, 83, 161-173.	1.9	295

#	Article	IF	CITATIONS
37	Use of Field Data to Support European Water Framework Directive Quality Standards for Dissolved Metals. Environmental Science & Environmental Science	4.6	64
38	Comparison of Tropical and Temperate Freshwater Animal Species' Acute Sensitivities to Chemicals: Implications for Deriving Safe Extrapolation Factors. Integrated Environmental Assessment and Management, 2007, 3, 49.	1.6	36