Jinxue Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8743074/publications.pdf

Version: 2024-02-01

		109137	174990
104	3,238	35	52
papers	citations	h-index	g-index
107	107	107	4544
107	107	107	4544
all docs	docs citations	times ranked	citing authors
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	S-doped CoP nanoneedles assembled urchin-like structure for efficient water oxidation. Materials Letters, 2022, 307, 131005.	1.3	7
2	PANI coated NiMoOP nanoarrays as efficient electrocatalyst for oxygen evolution. Journal of Electroanalytical Chemistry, 2022, 908, 116129.	1.9	2
3	Vanadium doped nickel hydroxide nanosheets for efficient overall alkaline water splitting. Journal of Physics and Chemistry of Solids, 2022, 164, 110634.	1.9	6
4	NASICON-structured Na3Mn0.5V0.5Ti(PO4)3 cathode with high capacity for sodium-ion batteries. Ceramics International, 2022, 48, 20933-20939.	2.3	7
5	N-doped graphene wrapped SnP2O7 for sodium storage with high pseudocapacitance contribution. Journal of Alloys and Compounds, 2021, 854, 156992.	2.8	22
6	Electrodeposition of Co4S3 on NiCo LDH nanosheet arrays for advanced hydrogen evolution. Materials Letters, 2021, 285, 129057.	1.3	9
7	Heterogeneous SnS-Ni3S2 nanostructure for efficient overall water splitting. Materials Letters, 2021, 287, 129290.	1.3	5
8	Engineering P-doped Ni3S2-NiS hybrid nanorod arrays for efficient overall water electrolysis. Journal of Alloys and Compounds, 2021, 862, 158391.	2.8	26
9	Coupled Co and Ir nanocrystals on graphite as pH-wide and efficient electrocatalyst for hydrogen evolution. Surfaces and Interfaces, 2021, 24, 101049.	1.5	3
10	Sulfur and nitrogen co-doped carbon nanosheets for improved sodium ion storage. Journal of Alloys and Compounds, 2021, 868, 159080.	2.8	13
11	Engineering heterogeneous nickel-iron oxide/iron phosphate on P, N co-doped carbon fibers for efficient oxygen evolution reaction in neutral and alkaline solutions. Surfaces and Interfaces, 2021, 25, 101193.	1.5	6
12	Co-doped Ni3S2 ultrathin nanosheets for efficient oxygen evolution catalysis. Materials Letters, 2021, 299, 130069.	1.3	3
13	Heterogeneous Co@CoO composited P, N co-doped carbon nanofibers on carbon cloth as pH-tolerant electrocatalyst for efficient oxygen evolution. Journal of Alloys and Compounds, 2021, 877, 160279.	2.8	16
14	Synergistic effect between sulfur and CoFe alloys embedded in N-doped carbon nanosheets for efficient hydrogen evolution under neutral condition. Chemical Engineering Journal, 2021, 426, 131922.	6.6	16
15	NiFeP nanocubes as advanced electrode material for hydrogen evolution and supercapacitor. Colloids and Interface Science Communications, 2021, 45, 100520.	2.0	9
16	Graphene layer encapsulated MoNi4-NiMoO4 for electrocatalytic water splitting. Applied Surface Science, 2020, 504, 144390.	3.1	29
17	VS ₄ â€Decorated Carbon Nanotubes for Lithium Storage with Pseudocapacitance Contribution. ChemSusChem, 2020, 13, 1637-1644.	3.6	32
18	Cu-Ru nanoalloys on carbon black for efficient production of hydrogen in neutral and alkaline conditions. Materials Letters, 2020, 262, 127041.	1.3	7

#	Article	IF	Citations
19	Electrodepositing Ru on carbon cloth supported Co(OH)2 nanosheet array for active overall water electrolysis. Journal of the Taiwan Institute of Chemical Engineers, 2020, 109, 71-78.	2.7	15
20	Ruthenium doped Ni2P nanosheet arrays for active hydrogen evolution in neutral and alkaline water. Sustainable Energy and Fuels, 2020, 4, 1883-1890.	2.5	11
21	Ru2P particles decorated Ni2P nanosheet as efficient and pH-universal material for hydrogen evolution. Applied Surface Science, 2020, 520, 146363.	3.1	15
22	Hybrid NiCo hydrogen carbonate with Pt nanoparticles on nickel foam for alkaline water hydrogen evolution. Journal of Alloys and Compounds, 2020, 833, 155131.	2.8	13
23	Hierarchical Ni(OH) ₂ â€MnO ₂ Array as Supercapacitor Electrode with High Capacity. Advanced Materials Interfaces, 2019, 6, 1801470.	1.9	23
24	Ultrafine cobalt–ruthenium alloy on nitrogen and phosphorus co-doped graphene for electrocatalytic water splitting. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104, 75-81.	2.7	12
25	Cerium and nitrogen doped CoP nanorod arrays for hydrogen evolution in all pH conditions. Sustainable Energy and Fuels, 2019, 3, 3344-3351.	2,5	9
26	CoFeP hollow cube as advanced electrocatalyst for water oxidation. Inorganic Chemistry Frontiers, 2019, 6, 604-611.	3.0	61
27	Hybridized Ni(PO3)2-MnPO4 nanosheets array with excellent electrochemical performances for overall water splitting and supercapacitor. Electrochimica Acta, 2019, 299, 835-843.	2.6	53
28	Template confined synthesis of NiCo Prussian blue analogue bricks constructed nanowalls as efficient bifunctional electrocatalyst for splitting water. Electrochimica Acta, 2019, 318, 333-341.	2.6	33
29	Vanadium doping over Ni3S2 nanosheet array for improved overall water splitting. Applied Surface Science, 2019, 489, 815-823.	3.1	50
30	MoS2 nanosheets decorated Ni(OH)2 nanorod array for active overall water splitting. Journal of Alloys and Compounds, 2019, 796, 86-92.	2.8	49
31	Co3[Fe(CN)6]2 nanocube derived architecture of Co,Fe co-doped MoS2 nanosheets for efficient water electrolysis. Electrochimica Acta, 2019, 309, 116-124.	2.6	30
32	Electrodepositing Pd on NiFe layered double hydroxide for improved water electrolysis. Materials Chemistry Frontiers, 2019, 3, 842-850.	3.2	40
33	Vanadium and nitrogen co-doped CoP nanoleaf array as pH-universal electrocatalyst for efficient hydrogen evolution. Journal of Alloys and Compounds, 2019, 791, 1070-1078.	2.8	50
34	Interlayer-expanded VMo2S4 nanosheets on RGO for high and fast lithium and sodium storage. Journal of Alloys and Compounds, 2019, 772, 178-185.	2.8	8
35	Ni-Co-B nanosheets coupled with reduced graphene oxide towards enhanced electrochemical oxygen evolution. Journal of Alloys and Compounds, 2019, 776, 511-518.	2.8	38
36	Efficient bifunctional vanadium-doped Ni ₃ S ₂ nanorod array for overall water splitting. Inorganic Chemistry Frontiers, 2019, 6, 443-450.	3.0	54

#	Article	IF	Citations
37	N-doped MoS2 nanosheets with exposed edges realizing robust electrochemical hydrogen evolution. Journal of Solid State Chemistry, 2018, 263, 84-87.	1.4	23
38	MoS2 nanosheets on B, N co-doped graphene nanosheets for active lithium storage. Materials Letters, 2018, 213, 162-165.	1.3	7
39	Nanosized SnO2-CoS constructed porous cubeas advanced lithium-ion batteries anode. Ceramics International, 2018, 44, 5569-5571.	2.3	19
40	Hybrid of Fe4[Fe(CN)6]3 nanocubes and MoS2 nanosheets on nitrogen-doped graphene realizing improved electrochemical hydrogen production. Electrochimica Acta, 2018, 263, 140-146.	2.6	38
41	In-situ confined formation of NiFe layered double hydroxide quantum dots in expanded graphite for active electrocatalytic oxygen evolution. Journal of Solid State Chemistry, 2018, 262, 181-185.	1.4	15
42	CoMoS3.13 nanosheets grafted on B, N co-doped graphene nanotubes as bifunctional catalyst for efficient water electrolysis. Journal of Alloys and Compounds, 2018, 731, 403-410.	2.8	22
43	FePt nanoalloys on N-doped graphene paper as integrated electrode towards efficient formic acid electrooxidation. Journal of Applied Electrochemistry, 2018, 48, 95-103.	1.5	11
44	Co3O4 Nanosheets Anchored on SiO2 Nanospheres for Non-Enzymatic Glucose Sensor. Journal of Nanoscience and Nanotechnology, 2018, 18, 7251-7254.	0.9	3
45	FeNi Cubic Cage@N-Doped Carbon Coupled with N-Doped Graphene toward Efficient Electrochemical Water Oxidation. ACS Sustainable Chemistry and Engineering, 2018, 6, 8266-8273.	3.2	68
46	Ni ₃ [Fe(CN) ₆] ₂ nanocubes boost the catalytic activity of Pt for electrochemical hydrogen evolution. Inorganic Chemistry Frontiers, 2018, 5, 1683-1689.	3.0	23
47	Nickel iron boride nanosheets on rGO for active electrochemical water oxidation. Journal of Solid State Chemistry, 2018, 265, 135-139.	1.4	31
48	Enhanced hydrogen evolution of MoS ₂ /RGO: vanadium, nitrogen dopants triggered new active sites and expanded interlayer. Inorganic Chemistry Frontiers, 2018, 5, 2092-2099.	3.0	36
49	N-doped reduced graphene oxide supported mixed Ni2P CoP realize efficient overall water electrolysis. Electrochimica Acta, 2018, 282, 626-633.	2.6	43
50	Neighbor nanocrystals of SnO 2 and TiO 2 for improved lithium storage. Materials Letters, 2017, 195, 104-107.	1.3	2
51	Double-shell CuS nanocages as advanced supercapacitor electrode materials. Journal of Power Sources, 2017, 355, 31-35.	4.0	104
52	Self-template synthesis of hierarchical CoMoS ₃ nanotubes constructed of ultrathin nanosheets for robust water electrolysis. Journal of Materials Chemistry A, 2017, 5, 11309-11315.	5.2	86
53	Shell-core MoS2 nanosheets@Fe3O4 sphere heterostructure with exposed active edges for efficient electrocatalytic hydrogen production. Journal of Alloys and Compounds, 2017, 715, 53-59.	2.8	40
54	One-Dimensional CoO@C Core–Shell Nanostructures for Improved Lithium Storage Properties. Journal of Nanoscience and Nanotechnology, 2017, 17, 735-740.	0.9	1

#	Article	IF	Citations
55	MoS 2 nanosheets on C 3 N 4 realizing improved electrochemical hydrogen evolution. Materials Letters, 2017, 197, 41-44.	1.3	14
56	FeS ₂ Intercalated Into Graphite as Sandwiched Anode for Lithium-Ion Battery. Journal of Nanoscience and Nanotechnology, 2017, 17, 4520-4523.	0.9	4
57	Loading Pt Nanoparticles on Metal–Organic Frameworks for Improved Oxygen Evolution. ACS Sustainable Chemistry and Engineering, 2017, 5, 11577-11583.	3.2	37
58	NiMoS ₃ Nanorods as pH-Tolerant Electrocatalyst for Efficient Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2017, 5, 9006-9013.	3.2	43
59	Fabrication of Cu 3 V 2 O 7 (OH) 2 \hat{A} ·2H 2 O nanoplates constructed flowers using Cu 2 O cube as sacrificial template for good lithium storage. Materials Letters, 2017, 188, 291-295.	1.3	4
60	Pie-like free-standing paper of graphene paper@Fe 3 O 4 nanorod array@carbon as integrated anode for robust lithium storage. Chemical Engineering Journal, 2017, 309, 272-277.	6.6	27
61	Sacrificial template formation of CoMoO ₄ hollow nanostructures constructed by ultrathin nanosheets for robust lithium storage. RSC Advances, 2016, 6, 51710-51715.	1.7	20
62	3D architecture constructed by 2D SnS2-graphene hybrids towards large and fast lithium storage. Materials Letters, 2016, 185, 311-314.	1.3	6
63	Flexible foams of graphene entrapped SnO ₂ –Co ₃ O ₄ nanocubes with remarkably large and fast lithium storage. Journal of Materials Chemistry A, 2016, 4, 16101-16107.	5.2	38
64	Hybrid catalyst of MoS2-CoMo2S4 on graphene for robust electrochemical hydrogen evolution. Fuel, 2016, 184, 559-564.	3.4	40
65	Layered FeMo4S6 nanosheets with robust lithium storage and electrochemical hydrogen evolution. Materials Letters, 2016, 183, 1-4.	1.3	23
66	Doping MoS2 with Graphene Quantum Dots: Structural and Electrical Engineering towards Enhanced Electrochemical Hydrogen Evolution. Electrochimica Acta, 2016, 211, 603-610.	2.6	72
67	Synthesis of 1D porous Fe 2 O 3 nanostructures using SiO 2 scaffold towards good lithium storages. Materials Letters, 2016, 171, 125-128.	1.3	5
68	Evaporation-induced self-assembly synthesis of mesoporous FeCo2O4 octahedra with large and fast lithium storage properties. Materials Letters, 2016, 166, 1-4.	1.3	16
69	Boosting the lithium storage performance of MoS ₂ with graphene quantum dots. Journal of Materials Chemistry A, 2016, 4, 4783-4789.	5.2	100
70	Mesoporous CoFe ₂ O ₄ octahedra with high-capacity and long-life lithium storage properties. RSC Advances, 2016, 6, 18-22.	1.7	11
71	One-step preparation of graphene nanosheets via ball milling of graphite and the application in lithium-ion batteries. Journal of Materials Science, 2016, 51, 3675-3683.	1.7	58
72	MoS 2 -graphene hybrid nanosheets constructed 3D architectures with improved electrochemical performance for lithium-ion batteries and hydrogen evolution. Electrochimica Acta, 2016, 189, 224-230.	2.6	89

#	Article	IF	CITATIONS
73	Self-template synthesis of CoFe ₂ O ₄ nanotubes for high-performance lithium storage. RSC Advances, 2015, 5, 29837-29841.	1.7	23
74	Oxygen-incorporated MoS2 ultrathin nanosheets grown on graphene for efficient electrochemical hydrogen evolution. Journal of Power Sources, 2015, 291, 195-200.	4.0	133
75	Fast and large lithium storages from CoMoO4 nanorods-graphene composite. Ionics, 2015, 21, 2993-2999.	1.2	21
76	Carbon entrapped nanosized Fe3O4 on Ni foam as integrated electrode with large and fast lithium storage. Materials Letters, 2015, 157, 63-66.	1.3	6
77	PtFe/nitrogen-doped graphene for high-performance electrooxidation of formic acid with composition sensitive electrocatalytic activity. RSC Advances, 2015, 5, 60237-60245.	1.7	28
78	Graphene-encapsulated cobalt sulfides nanocages with excellent anode performances for lithium ion batteries. Electrochimica Acta, 2015, 167, 32-38.	2.6	71
79	Construction of sandwiched graphene paper@Fe ₃ O ₄ nanorod array@graphene for large and fast lithium storage with an extended lifespan. Journal of Materials Chemistry A, 2015, 3, 19384-19392.	5.2	44
80	Topochemical transformation of Co(<scp>ii</scp>) coordination polymers to Co ₃ O ₄ nanoplates for high-performance lithium storage. Journal of Materials Chemistry A, 2015, 3, 2251-2257.	5.2	49
81	Self-template synthesis of magnetic cobalt nanotube based on Kirkendall effect. Materials Letters, 2015, 141, 288-290.	1.3	3
82	Syntheses, Characterization, and Electrochemical Lithiumâ€lon Storage Properties of Two Cobalt(II) Coordination Polymers Containing 5â€Hydroxyisophthalic Acid and Bisâ€benzoimidazole Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 2091-2096.	0.6	11
83	Ultralong life lithium-ion battery anode with superior high-rate capability and excellent cyclic stability from mesoporous Fe2O3@TiO2 core–shell nanorods. Journal of Materials Chemistry A, 2014, 2, 3912.	5.2	91
84	Self-assembled 3D Co3O4-graphene frameworks with high lithium storage performance. Ionics, 2014, 20, 1635-1639.	1.2	19
85	Large and stable reversible lithium-ion storages from mesoporous SnO2 nanosheets with ultralong lifespan over 1000 cycles. Journal of Power Sources, 2014, 268, 365-371.	4.0	40
86	One-dimensional mesoporous Fe2O3@TiO2 core–shell nanocomposites: Rational design, synthesis and application as high-performance photocatalyst in visible and UV light region. Applied Surface Science, 2014, 317, 43-48.	3.1	48
87	FePt nanoalloys anchored reduced graphene oxide as high-performance electrocatalysts for formic acid and methanol oxidation. Journal of Alloys and Compounds, 2014, 604, 286-291.	2.8	24
88	In situ synthesis of SnO2–Fe2O3@polyaniline and their conversion to SnO2–Fe2O3@C composite as fully reversible anode material for lithium-ion batteries. Journal of Power Sources, 2014, 246, 862-867.	4.0	82
89	Porous Co3O4 nanorods as anode for lithium-ion battery with excellent electrochemical performance. Journal of Solid State Chemistry, 2014, 213, 193-197.	1.4	28
90	Mesoporous CuO xerogels constructed by nanorods for high-performance lithium storage. Materials Letters, 2014, 118, 142-145.	1.3	12

#	Article	IF	Citations
91	Sol-gel synthesis of mesoporous Co3O4 octahedra toward high-performance anodes for lithium-ion batteries. Electrochimica Acta, 2014, 129, 410-415.	2.6	62
92	Monodisperse SnO2 anchored reduced graphene oxide nanocomposites as negative electrode with high rate capability and long cyclability for lithium-ion batteries. Journal of Power Sources, 2014, 262, 15-22.	4.0	84
93	Fe2.25W0.75O4/reduced graphene oxide nanocomposites for novel bifunctional photocatalyst: One-pot synthesis, magnetically recyclable and enhanced photocatalytic property. Journal of Solid State Chemistry, 2013, 205, 171-176.	1.4	17
94	Template-free solvothermal synthesis of monodisperse porous LiFePO4 microsphere as a high-power cathode material for lithium-ion batteries. Materials Letters, 2013, 106, 290-293.	1.3	10
95	Tungsten doping magnetic iron oxide and their enhanced lithium ion storage properties. Materials Letters, 2013, 106, 304-307.	1.3	10
96	One-pot synthesis of ferromagnetic Fe2.25W0.75O4 nanoparticles as a magnetically recyclable photocatalyst. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	5
97	Monodisperse spindle-like FeWO4 nanoparticles: Controlled hydrothermal synthesis and enhanced optical properties. Journal of Solid State Chemistry, 2012, 196, 550-556.	1.4	37
98	Ultrasonic-induced synthesis of high surface area colloids CeO2–ZrO2. Journal of Nanoparticle Research, 2009, 11, 737-741.	0.8	19
99	The Different Bio-Effects of Functionalized Multi-Walled Carbon Nanotubes on tetrahymena pyriformis. Current Nanoscience, 2008, 4, 240-245.	0.7	8
100	Biodistribution of functionalized multiwall carbon nanotubes in mice. Nuclear Medicine and Biology, 2007, 34, 579-583.	0.3	132
101	Dependence of the cytotoxicity of multi-walled carbon nanotubes on the culture medium. Nanotechnology, 2006, 17, 4668-4674.	1.3	87
102	The effects of \hat{l}^3 -irradiation dose on chemical modification of multi-walled carbon nanotubes. Nanotechnology, 2005, 16, 2385-2388.	1.3	61
103	The study of the filling behaviour of carbon nanotubes using the radioactive-trace technique. Nanotechnology, 2003, 14, 1203-1207.	1.3	4
104	Efficient hydrogen evolution by reconstruction of NiMoO ₄ –CoO <i>via</i> Mo recombination. Inorganic Chemistry Frontiers, 0, , .	3.0	6