David W Hein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8742248/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet, The, 2005, 366, 649-659.	13.7	558
2	Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2002, 506-507, 65-77.	1.0	427
3	Nomenclature for N-acetyltransferases. Pharmacogenetics and Genomics, 1995, 5, 1-17.	5.7	369
4	Metabolic activation and deactivation of arylamine carcinogens by recombinant human NAT1 and polymorphic NAT2 acetyltransferases. Carcinogenesis, 1993, 14, 1633-1638.	2.8	320
5	Clinical Pharmacokinetics of Isoniazid. Clinical Pharmacokinetics, 1979, 4, 401-422.	3.5	179
6	N-acetyltransferase 2 genetic polymorphism: effects of carcinogen and haplotype on urinary bladder cancer risk. Oncogene, 2006, 25, 1649-1658.	5.9	168
7	Inactivation of GSK-3β by Metallothionein Prevents Diabetes-Related Changes in Cardiac Energy Metabolism, Inflammation, Nitrosative Damage, and Remodeling. Diabetes, 2009, 58, 1391-1402.	0.6	152
8	A Role for Bioactivation and Covalent Binding within Epidermal Keratinocytes in Sulfonamide-Induced Cutaneous Drug Reactions. Journal of Investigative Dermatology, 2000, 114, 1164-1173.	0.7	142
9	Functional characterization of human N-acetyltransferase 2 (NAT2) single nucleotide polymorphisms. Pharmacogenetics and Genomics, 2001, 11, 207-215.	5.7	134
10	Acetylator genotype and arylamine-induced carcinogenesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 1988, 948, 37-66.	7.4	124
11	<i>N</i> -acetyltransferase SNPs: emerging concepts serve as a paradigm for understanding complexities of personalized medicine. Expert Opinion on Drug Metabolism and Toxicology, 2009, 5, 353-366.	3.3	114
12	Genetic polymorphisms in heterocyclic amine metabolism and risk of colorectal adenomas. Pharmacogenetics and Genomics, 2002, 12, 145-150.	5.7	111
13	Permanent hair dyes and bladder cancer: risk modification by cytochrome P4501A2 and N-acetyltransferases 1 and 2. Carcinogenesis, 2003, 24, 483-489.	2.8	111
14	Metallothionein Suppresses Angiotensin II–Induced Nicotinamide Adenine Dinucleotide Phosphate Oxidase Activation, Nitrosative Stress, Apoptosis, and Pathological Remodeling in the Diabetic Heart. Journal of the American College of Cardiology, 2008, 52, 655-666.	2.8	110
15	PharmGKB summary. Pharmacogenetics and Genomics, 2014, 24, 409-425.	1.5	106
16	Accuracy of various human <i>NAT2</i> SNP genotyping panels to infer rapid, intermediate and slow acetylator phenotypes. Pharmacogenomics, 2012, 13, 31-41.	1.3	104
17	Update on consensus arylamine N-acetyltransferase gene nomenclature. Pharmacogenetics and Genomics, 2000, 10, 291-292.	5.7	101
18	Metabolic activation of aromatic and heterocyclicN-hydroxyarylamines by wild-type and mutant recombinant human NAT1 and NAT2 acetyltransferases. Archives of Toxicology, 1994, 68, 129-133.	4.2	99

#	Article	IF	CITATIONS
19	Structure/Function Evaluations of Single Nucleotide Polymorphisms in Human N-Acetyltransferase 2. Current Drug Metabolism, 2008, 9, 471-486.	1.2	96
20	Functional characterization of single-nucleotide polymorphisms and haplotypes of human N-acetyltransferase 2. Carcinogenesis, 2007, 28, 1665-1671.	2.8	91
21	Polymorphisms of cytochrome P4501A2 and N -acetyltransferase genes, smoking, and risk of pancreatic cancer. Carcinogenesis, 2005, 27, 103-111.	2.8	83
22	Identification of N-Acetyltransferase 2 (NAT2) Transcription Start Sites and Quantitation of NAT2-Specific mRNA in Human Tissues. Drug Metabolism and Disposition, 2007, 35, 721-727.	3.3	83
23	Variability in drug metabolizing enzyme activity in HIV-infected patients. European Journal of Clinical Pharmacology, 2010, 66, 475-485.	1.9	80
24	N-Acetyltransferase genetics and their role in predisposition to aromatic and heterocyclic amine-induced carcinogenesis. Toxicology Letters, 2000, 112-113, 349-356.	0.8	71
25	Novel Human N-Acetyltransferase 2 Alleles That Differ in Mechanism for Slow Acetylator Phenotype. Journal of Biological Chemistry, 1999, 274, 34519-34522.	3.4	66
26	NAT2 slow acetylation and CSTM1 null genotypes may increase postmenopausal breast cancer risk in long-term smoking women. Pharmacogenetics and Genomics, 2003, 13, 399-407.	5.7	66
27	Functional characterization of nucleotide polymorphisms in the coding region of N-acetyltransferase 1. Pharmacogenetics and Genomics, 2001, 11, 511-520.	5.7	64
28	Changes in consensus arylamine N-acetyltransferase gene nomenclature. Pharmacogenetics and Genomics, 2008, 18, 367-368.	1.5	63
29	Dietary Selenium Reduces the Formation of Aberrant Crypts in Rats Administered 3,2′-Dimethyl-4-aminobiphenyl. Toxicology and Applied Pharmacology, 1999, 157, 36-42.	2.8	60
30	Meat Intake, Heterocyclic Amine Exposure, and Metabolizing Enzyme Polymorphisms in Relation to Colorectal Polyp Risk. Cancer Epidemiology Biomarkers and Prevention, 2008, 17, 320-329.	2.5	60
31	A single nucleotide polymorphism tags variation in the arylamine N-acetyltransferase 2 phenotype in populations of European background. Pharmacogenetics and Genomics, 2011, 21, 231-236.	1.5	60
32	Rodent models of the human acetylation polymorphism: Comparisons of recombinant acetyltransferases. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1997, 376, 101-106.	1.0	59
33	Comprehensive Human NAT2 Genotype Method Using Single Nucleotide Polymorphism-Specific Polymerase Chain Reaction Primers and Fluorogenic Probes. Analytical Biochemistry, 2001, 288, 106-108.	2.4	59
34	The T341C (Ile114Thr) polymorphism of N-acetyltransferase 2 yields slow acetylator phenotype by enhanced protein degradation. Pharmacogenetics and Genomics, 2004, 14, 717-723.	5.7	57
35	Acetylator phenotype and genotype in patients infected with HIV: discordance between methods for phenotype determination and genotype. Pharmacogenetics and Genomics, 2000, 10, 171-182.	5.7	56
36	Determination of HumanNAT2Acetylator Genotype by Restriction Fragment-Length Polymorphism and Allele-Specific Amplification. Analytical Biochemistry, 1995, 231, 413-420.	2.4	55

#	Article	IF	CITATIONS
37	Role of the renin-angiotensin system in hepatic ischemia reperfusion injury in rats. Hepatology, 2004, 40, 583-589.	7.3	55
38	Association of prostate cancer with rapidN-acetyltransferase 1 (NAT1*10) in combination with slowN-acetyltransferase 2 acetylator genotypes in a pilot case-control study. Environmental and Molecular Mutagenesis, 2002, 40, 161-167.	2.2	54
39	N-acetyltransferase (NAT1, NAT2) and glutathione S-transferase (CSTM1, GSTT1) polymorphisms in breast cancer. Cancer Letters, 2003, 196, 179-186.	7.2	54
40	Glutathione S-transferase genotypes and stomach cancer in a population-based case-control study in Warsaw, Poland. Pharmacogenetics and Genomics, 2001, 11, 655-661.	5.7	52
41	Bioactivation, protein haptenation, and toxicity of sulfamethoxazole and dapsone in normal human dermal fibroblastsâ~†. Toxicology and Applied Pharmacology, 2006, 215, 158-167.	2.8	52
42	Cigarette smoking, N-acetyltransferase genes and the risk of advanced colorectal adenoma. Pharmacogenomics, 2006, 7, 819-829.	1.3	52
43	Hair dye use and risk of bladder cancer in the New England bladder cancer study. International Journal of Cancer, 2011, 129, 2894-2904.	5.1	52
44	Human acetylator genotype: Relationship to colorectal cancer incidence and arylamine N-acetyltransferase expression in colon cytosol. Archives of Toxicology, 1993, 67, 445-452.	4.2	51
45	Tissue distribution ofN-acetyltransferase 1 and 2 catalyzing theN-acetylation of 4-aminobiphenyl andO-acetylation ofN-hydroxy-4-aminobiphenyl in the congenic rapid and slow acetylator Syrian hamster. Molecular Carcinogenesis, 2006, 45, 230-238.	2.7	51
46	Interaction of the cytochrome P4501A2, SULT1A1 and NAT gene polymorphisms with smoking and dietary mutagen intake in modification of the risk of pancreatic cancer. Carcinogenesis, 2008, 29, 1184-1191.	2.8	51
47	Identification of a Novel Allele at the HumanNAT1Acetyltransferase Locus. Biochemical and Biophysical Research Communications, 1997, 233, 584-591.	2.1	50
48	Identification of the major promoter and non-coding exons of the human arylamine N-acetyltransferase 1 gene (NAT1). Pharmacogenetics and Genomics, 2004, 14, 397-406.	5.7	50
49	Functional Analysis of the Human N-Acetyltransferase 1 Major Promoter: Quantitation of Tissue Expression and Identification of Critical Sequence Elements. Drug Metabolism and Disposition, 2007, 35, 1649-1656.	3.3	49
50	Genetic variation in N-acetyltransferase 1 (NAT1) and 2 (NAT2) and risk of non-Hodgkin lymphoma. Pharmacogenetics and Genomics, 2006, 16, 537-545.	1.5	48
51	Dehydroepiandrosterone Activation of G-protein-coupled Estrogen Receptor Rapidly Stimulates MicroRNA-21 Transcription in Human Hepatocellular Carcinoma Cells. Journal of Biological Chemistry, 2015, 290, 15799-15811.	3.4	47
52	Similarity of the discriminative stimulus effects of ketamine, cyclazocine, and dextrorphan in the pigeon. Psychopharmacology, 1981, 73, 286-291.	3.1	46
53	Urinary acetylated metabolites and N-acetyltransferase-2 genotype in human subjects treated with a para-phenylenediamine-containing oxidative hair dye. Food and Chemical Toxicology, 2004, 42, 1885-1891.	3.6	46
54	Functional properties of an alternative, tissue-specific promoter for human arylamine N-acetyltransferase 1. Pharmacogenetics and Genomics, 2006, 16, 515-525.	1.5	46

#	Article	IF	CITATIONS
55	Examination of polymorphic glutathione S-transferase (GST) genes, tobacco smoking and prostate cancer risk among Men of African Descent: A case-control study. BMC Cancer, 2009, 9, 397.	2.6	46
56	Cloning, Sequencing, and Recombinant Expression ofNAT1, NAT2,andNAT3Derived from the C3H/HeJ (Rapid) and A/HeJ (Slow) Acetylator Inbred Mouse: Functional Characterization of the Activation and Deactivation of Aromatic Amine Carcinogens. Toxicology and Applied Pharmacology, 1997, 142, 360-366.	2.8	45
57	A Restriction Fragment Length Polymorphism Assay That Differentiates HumanN-Acetyltransferase-1 (NAT1) Alleles. Analytical Biochemistry, 1997, 253, 219-224.	2.4	45
58	Effects of single nucleotide polymorphisms in human N-acetyltransferase 2 on metabolic activation (O-acetylation) of heterocyclic amine carcinogens. International Journal of Cancer, 2006, 119, 1208-1211.	5.1	45
59	Cloning, sequencing and expression of NAT1 and NAT2 encoding genes from rapid and slow acetylator inbred rats. Pharmacogenetics and Genomics, 1995, 5, 247-251.	5.7	43
60	Rapid Genotype Method to Distinguish Frequent and/or Functional Polymorphisms in Human N-Acetyltransferase-1. Analytical Biochemistry, 2002, 301, 328-332.	2.4	43
61	Structure-Function Analyses of Single Nucleotide Polymorphisms in Human N-Acetyltransferase 1. Drug Metabolism Reviews, 2008, 40, 169-184.	3.6	43
62	Hair dye use, genetic variation in N-acetyltransferase 1 (NAT1) and 2 (NAT2), and risk of non-Hodgkin lymphoma. Carcinogenesis, 2007, 28, 1759-1764.	2.8	39
63	Acetylator Phenotype and Genotype in HIV-Infected Patients with and without Sulfonamide Hypersensitivity. Journal of Clinical Pharmacology, 2002, 42, 613-619.	2.0	36
64	2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine-induced DNA adducts and genotoxicity in chinese hamster ovary (CHO) cells expressing human CYP1A2 and rapid or slow acetylator N-acetyltransferase 2. Molecular Carcinogenesis, 2007, 46, 553-563.	2.7	36
65	Codominant Expression of <i>N</i> -Acetylation and <i>O</i> -Acetylation Activities Catalyzed by <i>N</i> -Acetyltransferase 2 in Human Hepatocytes. Journal of Pharmacology and Experimental Therapeutics, 2010, 334, 540-544.	2.5	35
66	Acetyltransferases and susceptibility to chemicals. Toxicology Letters, 1992, 64-65, 123-130.	0.8	34
67	Manganese Superoxide Dismutase V16A Single-Nucleotide Polymorphism in the Mitochondrial Targeting Sequence Is Associated with Reduced Enzymatic Activity in Cryopreserved Human Hepatocytes. DNA and Cell Biology, 2009, 28, 3-7.	1.9	34
68	Identification and Characterization of Functional Rat Arylamine N-Acetyltransferase 3: Comparisons with Rat Arylamine N-Acetyltransferases 1 and 2. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 369-375.	2.5	33
69	Evidence for an intensity-dependent interaction of NAT2 acetylation genotype and cigarette smoking in the Spanish Bladder Cancer Study. International Journal of Epidemiology, 2007, 36, 236-241.	1.9	33
70	Effect of acetylator genotype on 3, 2'-dimethyl-4-aminobiphenyl induced aberrant crypt foci in the colon of hamsters. Carcinogenesis, 1996, 17, 459-465.	2.8	32
71	GSTM1 Null Genotype, Red Meat Consumption and Breast Cancer Risk (The Netherlands). Cancer Causes and Control, 2004, 15, 295-303.	1.8	32
72	Computational and Experimental Analyses of Mammalian Arylamine N-Acetyltransferase Structure and Function. Drug Metabolism and Disposition, 2007, 35, 1001-1007.	3.3	32

#	Article	IF	CITATIONS
73	Impact of misclassification in genotype-exposure interaction studies: example of N-acetyltransferase 2 (NAT2), smoking, and bladder cancer. Cancer Epidemiology Biomarkers and Prevention, 2004, 13, 1543-6.	2.5	32
74	Effect of nucleotide substitutions in N-acetyltransferase-1 on N-acetylation (deactivation) and O-acetylation (activation) of arylamine carcinogens: implications for cancer predisposition. Cancer Detection and Prevention, 2002, 26, 10-14.	2.1	31
75	2-Amino-3,8-Dimethylimidazo-[4,5- <i>f</i>]Quinoxaline–Induced DNA Adduct Formation and Mutagenesis in DNA Repair–Deficient Chinese Hamster Ovary Cells Expressing Human Cytochrome P4501A1 and Rapid or Slow Acetylator <i>N</i> -Acetyltransferase 2. Cancer Epidemiology Biomarkers and Prevention. 2007. 16. 1503-1509.	2.5	31
76	Commentary: Reflections on G. M. Lower and colleagues' 1979 study associating slow acetylator phenotype with urinary bladder cancer: meta-analysis, historical refinements of the hypothesis, and lessons learned. International Journal of Epidemiology, 2007, 36, 23-28.	1.9	31
77	Genetic and small molecule inhibition of arylamine <i>N</i> â€acetyltransferase 1 reduces anchorageâ€independent growth in human breast cancer cell line MDAâ€MBâ€231. Molecular Carcinogenesis, 2018, 57, 549-558.	2.7	31
78	Cloning, expression, and functional characterization of rapid and slow acetylator polymorphic N-acetyltransferase encoding genes of the Syrian hamster. Pharmacogenetics and Genomics, 1996, 6, 55-66.	5.7	30
79	Acetylator genotype-dependent metabolic activation of carcinogenic N-hydroxyarylamines by S-acetyl coenzyme A-dependent enzymes of inbred hamster tissue cytosols: relationship to arylamine N-acetyltransferase. Carcinogenesis, 1987, 8, 1767-1774.	2.8	28
80	The Chemical Form of Selenium Influences 3,2′-Dimethyl-4-aminobiphenyl-DNA Adduct Formation in Rat Colon. Journal of Nutrition, 1999, 129, 63-69.	2.9	28
81	Association of the HistamineN-Methyltransferase C314T (Thr105Ile) Polymorphism with Atopic Dermatitis in Caucasian Children. Pharmacotherapy, 2008, 28, 1495-1501.	2.6	28
82	Folate-dependent hydrolysis of acetyl-coenzyme A by recombinant human and rodent arylamine N-acetyltransferases. Biochemistry and Biophysics Reports, 2015, 3, 45-50.	1.3	28
83	No apparent association between genetic polymorphisms (â^'102 C>T) and (â^'9 T>C) in the human manganese superoxide dismutase gene and gastric cancer1. Journal of Surgical Research, 2005, 124, 92-97.	1.6	27
84	Haplotype of N-Acetyltransferase 1 and 2 and Risk of Pancreatic Cancer. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 2379-2386.	2.5	26
85	Functional characterization of the A411T (L137F) and G364A (D122N) genetic polymorphisms in human N-acetyltransferase 2. Pharmacogenetics and Genomics, 2007, 17, 37-45.	1.5	26
86	Effects of dietary factors and the NAT2 acetylator status on gastric cancer in Koreans. International Journal of Cancer, 2009, 125, 139-145.	5.1	26
87	Interaction among apoptosis-associated sequence variants and joint effects on aggressive prostate cancer. BMC Medical Genomics, 2012, 5, 11.	1.5	26
88	Polymorphic arylamine N-acetyltransferase encoding gene (NAT2) from homozygous rapid and slow acetylator congenic Syrian hamsters. Gene, 1994, 140, 247-249.	2.2	25
89	Reduced 4-aminobiphenyl-induced liver tumorigenicity but not DNA damage in arylamine N-acetyltransferase null mice. Cancer Letters, 2012, 318, 206-213.	7.2	25
90	N-Acetyltransferase (Nat) 1 and 2 Expression in Nat2 Knockout Mice. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 724-728.	2.5	24

#	Article	IF	CITATIONS
91	Differences between human slow N-acetyltransferase 2 alleles in levels of 4-aminobiphenyl-induced DNA adducts and mutations. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 671, 13-19.	1.0	24
92	4,4′-Methylenedianiline-Induced Hepatotoxicity Is Modified by N-Acetyltransferase 2 (NAT2) Acetylator Polymorphism in the Rat. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 289-294.	2.5	23
93	Clinical pharmacogenetics in pediatric patients. Pharmacogenomics, 2007, 8, 1403-1411.	1.3	23
94	Characterization of N-acetyltransferase 1 and 2 polymorphisms and haplotype analysis for inflammatory bowel disease and sporadic colorectal carcinoma. BMC Medical Genetics, 2007, 8, 28.	2.1	23
95	Interaction of cigarette smoking and carcinogen-metabolizing polymorphisms in the risk of colorectal polyps. Carcinogenesis, 2013, 34, 779-786.	2.8	23
96	Untargeted polar metabolomics of transformed MDA-MB-231 breast cancer cells expressing varying levels of human arylamine N-acetyltransferase 1. Metabolomics, 2016, 12, 1.	3.0	23
97	Tissue Expression and Genomic Sequences of Rat N-acetyltransferases rNat1, rNat2, rNat3, and Functional Characterization of a Novel rNat3*2 Genetic Variant. Toxicological Sciences, 2007, 99, 413-421.	3.1	22
98	The Impact of NAT2 Acetylator Genotype on Mutagenesis and DNA Adducts from 2-Amino-9 <i>H</i> -pyrido[2,3- <i>b</i>]indole. Chemical Research in Toxicology, 2009, 22, 726-733.	3.3	22
99	Genetic heterogeneity among slow acetylator N-acetyltransferase 2 phenotypes in cryopreserved human hepatocytes. Archives of Toxicology, 2017, 91, 2655-2661.	4.2	22
100	Arylamine N-acetyltransferase acetylation polymorphisms: paradigm for pharmacogenomic-guided therapy- a focused review. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 9-21.	3.3	22
101	A New Model for Toxic Risk Assessments: Construction of Homozygous Rapid and Slow Acetylator Congenic Syrian Hamster Lines. , 1991, 1, 44-52.		21
102	Syrian hamster monomorphic N-acetyltransferase (NAT 1) alleles. Pharmacogenetics and Genomics, 1994, 4, 82-90.	5.7	21
103	Higher Frequency of Aberrant Crypt Foci in Rapid Than Slow Acetylator Inbred Rats Administered the Colon Carcinogen 3,2′-Dimethyl-4-aminobiphenyl. Toxicology and Applied Pharmacology, 1997, 147, 56-62.	2.8	21
104	Genetic profiling of colon cancer. Journal of Surgical Oncology, 2002, 80, 204-213.	1.7	21
105	Knockout of human arylamine <i>N</i> â€acetyltransferase 1 (NAT1) in MDAâ€MBâ€231 breast cancer cells leads to increased reserve capacity, maximum mitochondrial capacity, and glycolytic reserve capacity. Molecular Carcinogenesis, 2018, 57, 1458-1466.	2.7	21
106	Association between acetylator genotype and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) DNA adduct formation in colon and prostate of inbred Fischer 344 and Wistar Kyoto rats. Cancer Letters, 2000, 149, 53-60.	7.2	20
107	Simultaneous Determination of 7 N-Acetyltransferase-2 Single-Nucleotide Variations by Allele-Specific Primer Extension Assay. Clinical Chemistry, 2006, 52, 1033-1039.	3.2	20
108	Mouse arylamine <i>N</i> -acetyltransferase 2 (<i>Nat2</i>) expression during embryogenesis: a potential marker for the developing neuroendocrine system. Biomarkers, 2008, 13, 106-118.	1.9	20

#	Article	IF	CITATIONS
109	Smoking, variation in N-acetyltransferase 1 (NAT1) and 2 (NAT2), and risk of non-Hodgkin lymphoma: a pooled analysis within the InterLymph consortium. Cancer Causes and Control, 2013, 24, 125-134.	1.8	20
110	<i>N</i> -Acetyltransferase 1 Knockout Elevates Acetyl Coenzyme A Levels and Reduces Anchorage-Independent Growth in Human Breast Cancer Cell Lines. Journal of Oncology, 2019, 2019, 1-11.	1.3	20
111	CRISPR/Cas9 knockout of human arylamine N-acetyltransferase 1 in MDA-MB-231 breast cancer cells suggests a role in cellular metabolism. Scientific Reports, 2020, 10, 9804.	3.3	20
112	Effect of rapid human N-acetyltransferase 2 haplotype on DNA damage and mutagenesis induced by 2-amino-3-methylimidazo-[4,5-f]quinoline (IQ) and 2-amino-3,8-dimethylimidazo-[4,5-f]quinoxaline (MeIQx). Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2010, 684, 66-73.	1.0	19
113	Quantitative Tissue and Gene-Specific Differences and Developmental Changes in <i>Nat1</i> , <i>Nat2</i> , and <i>Nat3</i> mRNA Expression in the Rat. Drug Metabolism and Disposition, 2008, 36, 2445-2451.	3.3	18
114	Functional effects of genetic polymorphisms in the N-acetyltransferase 1 coding and 3′ untranslated regions. Birth Defects Research Part A: Clinical and Molecular Teratology, 2011, 91, 77-84.	1.6	18
115	NATb/ <i>NAT1*4</i> promotes greater arylamine <i>N</i> â€ecetyltransferase 1 mediated DNA adducts and mutations than NATa/ <i>NAT1*4</i> following exposure to 4â€eminobiphenyl. Molecular Carcinogenesis, 2012, 51, 636-646.	2.7	18
116	Functional expression of human arylamine N-acetyltransferase NAT1*10 and NAT1*11 alleles. Pharmacogenetics and Genomics, 2018, 28, 238-244.	1.5	18
117	Association between manganese superoxide dismutase promoter gene polymorphism and breast cancer survival. Breast Cancer Research, 2006, 8, R45.	5.0	17
118	N-acetyltransferase 2 Genotype Modification of Active Cigarette Smoking on Breast Cancer Risk among Hispanic and Non-Hispanic White Women. Toxicological Sciences, 2009, 112, 211-220.	3.1	17
119	Functional analysis of arylamine N-acetyltransferase 1 (NAT1) NAT1*10 haplotypes in a complete NATb mRNA construct. Carcinogenesis, 2012, 33, 348-355.	2.8	16
120	Daily Rhythm in Plasma N-acetyltryptamine. Journal of Biological Rhythms, 2017, 32, 195-211.	2.6	16
121	High N-Acetyltransferase 1 Expression is Associated with Estrogen Receptor Expression in Breast Tumors, but is not Under Direct Regulation by Estradiol, 5 <i>α</i> -androstane-3 <i>β</i> , 17 <i>β</i> -Diol, or Dihydrotestosterone in Breast Cancer Cells. Journal of Pharmacology and Experimental Therapeutics. 2018. 365. 84-93.	2.5	16
122	Systemic Functional Expression of N-Acetyltransferase Polymorphism in the F344 Nat2 Congenic Rat. Drug Metabolism and Disposition, 2008, 36, 2452-2459.	3.3	15
123	Congenic rats with higher arylamine N-acetyltransferase 2 activity exhibit greater carcinogen-induced mammary tumor susceptibility independent of carcinogen metabolism. BMC Cancer, 2017, 17, 233.	2.6	15
124	Expression and genotype-dependent catalytic activity of N-acetyltransferase 2 (NAT2) in human peripheral blood mononuclear cells and its modulation by Sirtuin 1. Biochemical Pharmacology, 2018, 156, 340-347.	4.4	15
125	Inheritance of acetylator genotype-dependent arylamine N-acetyltransferase in hamster bladder cytosol. Carcinogenesis, 1987, 8, 647-652.	2.8	14
126	Effect of <i>N</i> -Acetyltransferase 2 Polymorphism on Tumor Target Tissue DNA Adduct Levels in Rapid and Slow Acetylator Congenic Rats Administered 2-Amino-1-methyl-6-phenylimidazo[4,5- <i>b</i>]pyridine or 2-Amino-3,8-dimethylimidazo-[4,5- <i>f</i>]quinoxaline. Drug Metabolism and Disposition, 2009, 37, 2123-2126.	3.3	14

#	Article	IF	CITATIONS
127	Using gene-environment interaction analyses to clarify the role of well-done meat and heterocyclic amine exposure in the etiology of colorectal polyps. American Journal of Clinical Nutrition, 2012, 96, 1119-1128.	4.7	14
128	Arylamine N -acetyltransferase 2 genotype-dependent N -acetylation of isoniazid in cryopreserved human hepatocytes. Acta Pharmaceutica Sinica B, 2017, 7, 517-522.	12.0	14
129	Identification and characterization of potent, selective, and efficacious inhibitors of human arylamine N-acetyltransferase 1. Archives of Toxicology, 2022, 96, 511-524.	4.2	14
130	Genetic polymorphism and cancer susceptibility: Evidence concerning acetyltransferases and cancer of the urinary bladder. BioEssays, 1988, 9, 200-204.	2.5	13
131	Acetylator genotype-dependent N-acetylation of arylamines in vivo and in vitro by hepatic and extrahepatic organ cytosols of Syrian hamsters congenic at the polymorphic acetyltransferase locus. Archives of Toxicology, 1992, 66, 112-117.	4.2	13
132	2-aminofluorene-DNA adduct levels in tumor-target and nontargetorgans of rapid and slow acetylator syrian hamsters congenic at the NAT2 locus. Toxicology and Applied Pharmacology, 1996, 141, 248-255.	2.8	13
133	Higher DNA Adduct Levels in Urinary Bladder and Prostate of Slow Acetylator Inbred Rats Administered 3,2′-Dimethyl-4-Aminobiphenyl. Toxicology and Applied Pharmacology, 1999, 156, 187-194.	2.8	13
134	METHODS FOR AROMATIC AND HETEROCYCLIC AMINE CARCINOGEN-DNA ADDUCT ANALYSIS BY LIQUID CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY. Polycyclic Aromatic Compounds, 2008, 28, 402-417.	2.6	13
135	Role of human CYP1A1 and NAT2 in 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine-induced mutagenicity and DNA adducts. Xenobiotica, 2009, 39, 399-406.	1.1	13
136	Phenotype of the Most Common "Slow Acetylator―Arylamine <i>N</i> -Acetyltransferase 1 Genetic Variant (<i>NAT1</i> * <i>14B</i>) Is Substrate-Dependent. Drug Metabolism and Disposition, 2012, 40, 198-204.	3.3	13
137	Retrospective analysis of estrogen receptor�1 and N‑acetyltransferase gene expression in normal breast tissue, primary breast tumors, and established breast cancer cell lines. International Journal of Oncology, 2018, 53, 694-702.	3.3	13
138	Functional Genomics of C190T Single Nucleotide Polymorphism in Human N-Acetyltransferase 2. Biological Chemistry, 2002, 383, 983-987.	2.5	12
139	No Association between Variant <i>N</i> -acetyltransferase Genes, Cigarette Smoking and Prostate Cancer Susceptibility Among Men of African Descent. Biomarkers in Cancer, 2011, 3, BIC.S6111.	3.6	12
140	3,2′-Dimethyl-4-aminobiphenyl-DNA Adduct Formation in Tumor Target and Nontarget Organs of Rapid and Slow Acetylator Syrian Hamsters Congenic at theNAT2Locus. Toxicology and Applied Pharmacology, 1996, 140, 315-321.	2.8	11
141	Metabolic Activation of 2-Hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine in Syrian Hamsters Congenic at the N-Acetyltransferase 2 (NAT2) Locus. Toxicological Sciences, 2003, 74, 253-259.	3.1	11
142	Genetic variation in N-acetyltransferases 1 and 2, cigarette smoking, and risk of non-Hodgkin lymphoma. Cancer Causes and Control, 2010, 21, 127-133.	1.8	11
143	Manganese Superoxide Dismutase Expression as a Function of Genotype and Lung Cancer Pathology. Cancer Investigation, 2010, 28, 813-819.	1.3	11
144	<i>N</i> -Acetyltransferase 2 Genotype-Dependent <i>N</i> -Acetylation of Hydralazine in Human Hepatocytes. Drug Metabolism and Disposition, 2017, 45, 1276-1281.	3.3	11

#	Article	IF	CITATIONS
145	DNA adduct levels and absence of tumors in female rapid and slow acetylator congenic hamsters administered the rat mammary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Journal of Biochemical and Molecular Toxicology, 2001, 15, 26-33.	3.0	10
146	Dose-dependent reduction of 3,2′-dimethyl-4-aminobiphenyl-derived DNA adducts in colon and liver of rats administered celecoxib. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 638, 103-109.	1.0	10
147	4-Aminobiphenyl Downregulation of NAT2 Acetylator Genotype-Dependent N- and O-acetylation of Aromatic and Heterocyclic Amine Carcinogens in Primary Mammary Epithelial Cell Cultures from Rapid and Slow Acetylator Rats. Toxicological Sciences, 2008, 107, 293-297.	3.1	10
148	Role of Human N―Acetyltransferase 2 Genetic Polymorphism on Aromatic Amine Carcinogen―nduced DNA Damage and Mutagenicity in a Chinese Hamster Ovary Cell Mutation Assay. Environmental and Molecular Mutagenesis, 2020, 61, 235-245.	2.2	10
149	Human arylamine N-acetyltransferase 2 genotype-dependent protein expression in cryopreserved human hepatocytes. Scientific Reports, 2020, 10, 7566.	3.3	10
150	DNA Adduct Levels and Intestinal Lesions in Congenic Rapid and Slow Acetylator Syrian Hamsters Administered the Food Mutagens 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) or		

#	Article	IF	CITATIONS
163	Acetylator Genotype-Dependent Dyslipidemia in Rats Congenic for N-Acetyltransferase 2. Toxicology Reports, 2020, 7, 1319-1330.	3.3	6
164	Acetylation of putative arylamine and alkylaniline carcinogens in immortalized human fibroblasts transfected with rapid and slow acetylator N-acetyltransferase 2 haplotypes. Archives of Toxicology, 2021, 95, 311-319.	4.2	6
165	Evaluation of Oxidative Stress Response Related Genetic Variants, Pro-oxidants, Antioxidants and Prostate Cancer. AIMS Medical Science, 2015, 2, 271-294.	0.4	6
166	Role of the <i>N</i> -acetylation polymorphism in solithromycin metabolism. Pharmacogenomics, 2017, 18, 765-772.	1.3	5
167	Rabbit N-acetyltransferase 2 genotyping method to investigate role of acetylation polymorphism on N- and O-acetylation of aromatic and heterocyclic amine carcinogens. Archives of Toxicology, 2017, 91, 3185-3188.	4.2	5
168	Role of N -acetyltransferase 2 acetylation polymorphism in 4, 4′-methylene bis (2-chloroaniline) biotransformation. Toxicology Letters, 2018, 283, 100-105.	0.8	5
169	Arylamine <i>N</i> -Acetyltransferase Type 2 Polymorphism and Human Urinary Bladder and Breast Cancer Risks. , 2018, , 327-349.		5
170	Human N-Acetyltransferase 1 and 2 Differ in Affinity Towards Acetyl-Coenzyme A Cofactor and N-Hydroxy-Arylamine Carcinogens. Frontiers in Pharmacology, 2022, 13, 821133.	3.5	5
171	Proteomic analysis of arylamine N-acetyltransferase 1 knockout breast cancer cells: Implications in immune evasion and mitochondrial biogenesis. Toxicology Reports, 2022, 9, 1566-1573.	3.3	5
172	Chemopreventive drug treatment in subjects with genetic predisposition to cancer: prescriber liability and healthcare disparities. Pharmacogenomics, 2004, 5, 319-329.	1.3	4
173	An alternative cyclin-D1 splice site is not linked to inflammatory bowel disease-associated neoplasia. International Journal of Biological Markers, 2010, 25, 27-31.	1.8	4
174	Arylamine N-Acetyltransferase 1 Activity is Regulated by the Protein Acetylation Status. Frontiers in Pharmacology, 2022, 13, 797469.	3.5	4
175	Deletion of arylamine <i>N</i> â€acetyltransferase 1 in MDAâ€MBâ€231 human breast cancer cells reduces primary and secondary tumor growth in vivo with no significant effects on metastasis. Molecular Carcinogenesis, 2022, 61, 481-493.	2.7	4
176	Polymorphic genes of detoxification and mitochondrial enzymes and risk for progressive supranuclear palsy: a case control study. BMC Medical Genetics, 2012, 13, 16.	2.1	3
177	Catalytic properties and heat stabilities of novel recombinant human N-acetyltransferase 2 allozymes support existence of genetic heterogeneity within the slow acetylator phenotype. Archives of Toxicology, 2017, 91, 2827-2835.	4.2	3
178	Design and Success of a 21st Century Cancer Education Program at the University of Louisville. Journal of Cancer Education, 2018, 33, 298-308.	1.3	3
179	Acetylator Genotype-Dependent Metabolic Activation ofN-Hydroxy-2-Aminofluorene in Syrian Hamster Lines Congenic at theNAT2Locus. Polycyclic Aromatic Compounds, 1994, 7, 59-66.	2.6	2
180	Recombinant expression and catalytic analysis of rapid and slow acetylator Syrian hamster chimeric NAT2 alleles. Archives of Toxicology, 1997, 71, 306-313.	4.2	2

#	Article	IF	CITATIONS
181	Genetic Polymorphism of N-Acetyltransferase Genes as Risk Modifiers of Colorectal Cancer from Consumption of Well-Done Meat. , 2006, , 189-212.		2
182	The Human Arylamine <i>N</i> -Acetyltransferase Type 2 Gene: Genomics and Cardiometabolic Risk. , 2018, , 43-67.		2
183	560G>A (rs4986782) (R187Q) Single Nucleotide Polymorphism in Arylamine N-Acetyltransferase 1 Increases Affinity for the Aromatic Amine Carcinogens 4-Aminobiphenyl and N-Hydroxy-4-Aminobiphenyl: Implications for Cancer Risk Assessment. Frontiers in Pharmacology, 2022, 13. 820082.	3.5	2
184	Hexavalent chromium increases the metabolism and genotoxicity of aromatic amine carcinogens 4-aminobiphenyl and β-naphthylamine in immortalized human lung epithelial cells. Toxicology and Applied Pharmacology, 2022, , 116095.	2.8	2
185	TaqMan Real Time–Polymerase Chain Reaction Methods for Determination of Nucleotide Polymorphisms in Human N â€Acetyltransferaseâ€1 (NAT1) and â€2 (NAT2). Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2004, 22, Unit4.15.	1.1	1
186	Phenotypic and Genotypic Characterization of N-Acetylation. , 2005, , 173-195.		1
187	Chemoprevention of Arylamine-Induced Colorectal Aberrant Crypts. Experimental Biology and Medicine, 2008, 233, 71-75.	2.4	1
188	A four-SNP NAT2 genotyping panel recommended to infer human acetylator phenotype. Pharmacogenomics, 2012, 13, 855-855.	1.3	1
189	Expression of arylamine N-acetyltransferase 2 activity in immortalized human bronchial epithelial cells. Toxicology and Applied Pharmacology, 2022, 442, 115993.	2.8	1
190	Influence of <i>N</i> â€acetyltransferase polymorphism in the <i>N</i> â€acetylation of asparagine and putrescine. FASEB Journal, 2022, 36, .	0.5	1
191	Relationship of Syrian inbred hamster acetylator genotype to the mutagenic activation of 2-aminofluorene. Mutagenesis, 1990, 5, 233-240.	2.6	0
192	Changes in Insulin Signaling and Gluconeogenic Gene Expression in Human Hepatocytes Following Exposure to Heterocyclic Amines. FASEB Journal, 2021, 35, .	0.5	0
193	Genetic Polymorphism of N -Acetyltransferase Genes as Risk Modifiers of Colorectal Cancer from Consumption of Well-Done Meat. , 2006, , 189-212.		0
194	Structure homology modeling of human arylamine Nâ€acetyltransferases: Computational and experimental approaches. FASEB Journal, 2007, 21, A1186.	0.5	0
195	Functional analysis of the human Nâ€acetyltransferase 1 (NAT1) major promoter: Quantitation of tissue expression and identification of critical sequence elements. FASEB Journal, 2007, 21, A195.	0.5	0
196	Interaction among Carcinogenâ€biotransformation Genes (Nâ€acetyltransferase 1 and 2) and Prostate Cancer Risk Using a Comprehensive Analytical Approach. FASEB Journal, 2007, 21, A416.	0.5	0
197	Human rapid acetylator Nâ€acetyltransferase 2 (NAT2) genotype leads to greater mutagenesis and DNA damage than slow acetylator NAT2 genotype in DNAâ€deficient Chinese Hamster Ovary (CHO) cells treated with arylamine carcinogens. FASEB Journal, 2007, 21, A414.	0.5	0
198	Significantly higher 2â€aminoâ€3,8â€dimethylimidazoâ€{4,5â€f]quinoxaline–induced DNA adducts and mutagenesis in Chinese hamster ovary cells expressing human CYP1A1 and rapid or slow acetylator Nâ€acetyltransferase 2. FASEB Journal, 2007, 21, A414.	0.5	0

#	Article	IF	CITATIONS
199	Functional effects of human Nâ€acetyltransferaseâ€2 (NAT2) single nucleotide polymorphisms (SNPs) on the activation of arylamine carcinogens. FASEB Journal, 2007, 21, A414.	0.5	0
200	Functional effects of Nâ€acetyltransferase 1 (NAT1*10) polymorphisms. FASEB Journal, 2009, 23, LB394.	0.5	0
201	Identification and Characterization of Novel Arylamine NAcetyltransferase Small Molecule Inhibitors. FASEB Journal, 2012, 26, 851.16.	0.5	0
202	The Role of Arylamine Nâ€acetyltransferase 1 in Breast Cancer Progression. FASEB Journal, 2013, 27, lb579.	0.5	0
203	First year cohort results for the NCI R25 University of Louisville Cancer Education Program. FASEB Journal, 2013, 27, 516.2.	0.5	0