Soohyun Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8742140/publications.pdf

Version: 2024-02-01

623188 525886 33 748 14 27 citations g-index h-index papers 34 34 34 971 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nanoarchitectured air-stable supported lipid bilayer incorporating sucrose–bicelle complex system. Nano Convergence, 2022, 9, 3.	6.3	1
2	Selective Recognition of Phosphatidylinositol Phosphate Receptors by C-Terminal Tail of Mitotic Kinesin-like Protein 2 (MKlp2). Journal of Physical Chemistry B, 2022, 126, 2345-2352.	1.2	3
3	Engineered lipid bicelle nanostructures for membrane-disruptive antibacterial applications. Applied Materials Today, 2021, 22, 100947.	2.3	7
4	Mechanistic Aspects of the Evolution of 3D Cholesterol Crystallites in a Supported Lipid Membrane via a Quartz Crystal Microbalance with Dissipation Monitoring. Langmuir, 2021, 37, 4562-4570.	1.6	2
5	Biophysical Measurement Strategies for Antiviral Drug Development: Recent Progress in Virus-Mimetic Platforms Down to the Single Particle Level. Accounts of Chemical Research, 2021, 54, 3204-3214.	7.6	3
6	Probing the influence of tether density on tethered bilayer lipid membrane (tBLM)-peptide interactions. Applied Materials Today, 2020, 18, 100527.	2.3	5
7	Optimal formation of uniform-phase supported lipid bilayers from phospholipid–monoglyceride bicellar mixtures. Journal of Industrial and Engineering Chemistry, 2020, 88, 285-291.	2.9	9
8	Versatile formation of supported lipid bilayers from bicellar mixtures of phospholipids and capric acid. Scientific Reports, 2020, 10, 13849.	1.6	11
9	Crystallization of Cholesterol in Phospholipid Membranes Follows Ostwald's Rule of Stages. Journal of the American Chemical Society, 2020, 142, 21872-21882.	6.6	14
10	Competing Interactions of Fatty Acids and Monoglycerides Trigger Synergistic Phospholipid Membrane Remodeling. Journal of Physical Chemistry Letters, 2020, 11, 4951-4957.	2.1	22
11	Transformation of hard pollen into soft matter. Nature Communications, 2020, 11, 1449.	5. 8	58
12	A facile approach to patterning pollen microparticles for in situ imaging. Applied Materials Today, 2020, 20, 100702.	2.3	2
13	Supported lipid bilayer platform for characterizing the optimization of mixed monoglyceride nano-micelles. Applied Materials Today, 2020, 19, 100598.	2.3	7
14	Supported Lipid Bilayer Formation from Phospholipid-Fatty Acid Bicellar Mixtures. Langmuir, 2020, 36, 5021-5029.	1.6	14
15	Comparing the Membrane-Interaction Profiles of Two Antiviral Peptides: Insights into Structure–Function Relationship. Langmuir, 2019, 35, 9934-9943.	1.6	25
16	Influence of NaCl Concentration on Bicelle-Mediated SLB Formation. Langmuir, 2019, 35, 10658-10666.	1.6	25
17	Quantitative accounting of dye leakage and photobleaching in single lipid vesicle measurements: Implications for biomacromolecular interaction analysis. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110338.	2.5	5
18	Characterizing the Supported Lipid Membrane Formation from Cholesterol-Rich Bicelles. Langmuir, 2019, 35, 15063-15070.	1.6	26

#	Article	IF	Citations
19	Solvent-assisted preparation of supported lipid bilayers. Nature Protocols, 2019, 14, 2091-2118.	5.5	70
20	Micropatterned Viral Membrane Clusters for Antiviral Drug Evaluation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 13984-13990.	4.0	7
21	Characterizing the Membrane-Disruptive Behavior of Dodecylglycerol Using Supported Lipid Bilayers. Langmuir, 2019, 35, 3568-3575.	1.6	14
22	Characterizing How Acidic pH Conditions Affect the Membrane-Disruptive Activities of Lauric Acid and Glycerol Monolaurate. Langmuir, 2018, 34, 13745-13753.	1.6	27
23	Therapeutic treatment of Zika virus infection using a brain-penetrating antiviral peptide. Nature Materials, 2018, 17, 971-977.	13.3	74
24	Nanoplasmonic Sensing Architectures for Decoding Membrane Curvature-Dependent Biomacromolecular Interactions. Analytical Chemistry, 2018, 90, 7458-7466.	3.2	16
25	Membrane Reconstitution of Monoamine Oxidase Enzymes on Supported Lipid Bilayers. Langmuir, 2018, 34, 10764-10773.	1.6	4
26	Spatially Controlled Molecular Encapsulation in Natural Pine Pollen Microcapsules. Particle and Particle Systems Characterization, 2018, 35, 1800151.	1.2	8
27	Membrane adaptation limitations in <i>Enterococcus faecalis</i> li>underlie sensitivity and the inability to develop significant resistance to conjugated oligoelectrolytes. RSC Advances, 2018, 8, 10284-10293.	1.7	15
28	Plantâ∈Based Hollow Microcapsules for Oral Delivery Applications: Toward Optimized Loading and Controlled Release. Advanced Functional Materials, 2017, 27, 1700270.	7.8	74
29	Drug Delivery: Plantâ€Based Hollow Microcapsules for Oral Delivery Applications: Toward Optimized Loading and Controlled Release (Adv. Funct. Mater. 31/2017). Advanced Functional Materials, 2017, 27, .	7.8	0
30	Cellulose Nanofibers for the Enhancement of Printability of Low Viscosity Gelatin Derivatives. BioResources, 2017, 12, .	0.5	70
31	Natural Sunflower Pollen as a Drug Delivery Vehicle. Small, 2016, 12, 1167-1173.	5.2	81
32	<i>Lycopodium</i> Spores: A Naturally Manufactured, Superrobust Biomaterial for Drug Delivery. Advanced Functional Materials, 2016, 26, 487-497.	7.8	47
33	Drug Delivery: <i>Lycopodium</i> Spores: A Naturally Manufactured, Superrobust Biomaterial for Drug Delivery (Adv. Funct. Mater. 4/2016). Advanced Functional Materials, 2016, 26, 632-632.	7.8	1