Victor V Krylov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8742002/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acoustic â€~black holes' for flexural waves as effective vibration dampers. Journal of Sound and Vibration, 2004, 274, 605-619.	3.9	318
2	Generation of ground vibrations by superfast trains. Applied Acoustics, 1995, 44, 149-164.	3.3	227
3	Experimental investigation of the acoustic black hole effect for flexural waves in tapered plates. Journal of Sound and Vibration, 2007, 300, 43-49.	3.9	181
4	Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect. Journal of Sound and Vibration, 2011, 330, 2497-2508.	3.9	160
5	Surface Acoustic Waves in Inhomogeneous Media. Springer Series on Wave Phenomena, 1995, , .	0.7	151
6	Damping of flexural vibrations in rectangular plates using the acoustic black hole effect. Journal of Sound and Vibration, 2010, 329, 4672-4688.	3.9	101
7	Damping of flexural vibrations in circular plates with tapered central holes. Journal of Sound and Vibration, 2011, 330, 2220-2236.	3.9	88
8	Calculation of low-frequency ground vibrations from railway trains. Applied Acoustics, 1994, 42, 199-213.	3.3	76
9	Experimental investigation of damping flexural vibrations in glass fibre composite plates containing one- and two-dimensional acoustic black holes. Composite Structures, 2014, 107, 406-415.	5.8	75
10	Acoustic black holes: recent developments in the theory and applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 1296-1306.	3.0	75
11	Ground-borne vibration generated by vehicles crossing road humps and speed control cushions. Applied Acoustics, 2000, 59, 221-236.	3.3	70
12	Vibrational impact of highâ€speed trains. I. Effect of track dynamics. Journal of the Acoustical Society of America, 1996, 100, 3121-3134.	1.1	65
13	Experimental investigation of damping flexural vibrations in plates containing tapered indentations of power-law profile. Applied Acoustics, 2013, 74, 553-560.	3.3	65
14	Experimental study of sound radiation by plates containing circular indentations of power-law profile. Applied Acoustics, 2015, 88, 30-37.	3.3	61
15	Effect of geometrical and material imperfections on damping flexural vibrations in plates with attached wedges of power law profile. Applied Acoustics, 2012, 73, 514-523.	3.3	56
16	Damping of flexural vibrations in turbofan blades using the acoustic black hole effect. Applied Acoustics, 2014, 76, 359-365.	3.3	56
17	Flexural edge waves and Comments on "A new bending wave solution for the classical plate equation― [J. Acoust. Soc. Am.104, 2220–2222 (1998)]. Journal of the Acoustical Society of America, 2000, 107, 1781-1784.	1.1	53
18	Harmonic generation and parametric mixing in wedge acoustic waves. Wave Motion, 1992, 15, 185-200.	2.0	51

VICTOR V KRYLOV

#	Article	IF	CITATIONS
19	Vibration of a rectangular plate with a central power-law profiled groove by the Rayleigh–Ritz method. Applied Acoustics, 2016, 104, 24-32.	3.3	48
20	On the velocities of localized vibration modes in immersed solid wedges. Journal of the Acoustical Society of America, 1998, 103, 767-770.	1.1	43
21	Point mobility of a cylindrical plate incorporating a tapered hole of power-law profile. Journal of the Acoustical Society of America, 2011, 129, 3475-3482.	1.1	33
22	Slots of Power-Law Profile as Acoustic Black Holes for Flexural Waves in Metallic and Composite Plates. Structures, 2016, 6, 48-58.	3.6	26
23	Experimental investigation of the aquatic propulsion caused by localised flexural wave propagation in immersed wedges and plates. Applied Acoustics, 2007, 68, 97-113.	3.3	22
24	Overview of localised flexural waves in wedges of power-law profile and comments on their relationship with the acoustic black hole effect. Journal of Sound and Vibration, 2020, 468, 115100.	3.9	21
25	Effect of surface phenomena in solids on surface acoustic waves. Progress in Surface Science, 1989, 32, 39-110.	8.3	19
26	Spectra of Low-Frequency Ground Vibrations Generated by High-Speed Trains on Layered Ground. Journal of Low Frequency Noise Vibration and Active Control, 1997, 16, 257-270.	2.9	19
27	On the theory of standing waves in tyres at high vehicle speeds. Journal of Sound and Vibration, 2010, 329, 4398-4408.	3.9	19
28	Experimental confirmation of the propulsion of marine vessels employing guided flexural waves in attached elastic fins. Journal of Fluids and Structures, 2007, 23, 297-307.	3.4	18
29	Calculation of ground vibration spectra from heavy military vehicles. Journal of Sound and Vibration, 2010, 329, 3020-3029.	3.9	18
30	Generation of flexural waves in plates by laser-initiated airborne shock waves. Journal of Sound and Vibration, 2011, 330, 217-228.	3.9	17
31	Control of Traffic-Induced Ground Vibrations by Placing Heavy Masses on the Ground Surface. Journal of Low Frequency Noise Vibration and Active Control, 2007, 26, 311-321.	2.9	13
32	9. Generation of ground vibration boom by high-speed trains. , 2001, , 251-283.		12
33	Air-related mechanisms of noise generation by solid rubber tyres with cavities. Applied Acoustics, 2010, 71, 854-860.	3.3	12
34	Localized vibration modes in free anisotropic wedges. Journal of the Acoustical Society of America, 2000, 107, 657-660.	1.1	11
35	Directivity patterns of laser-generated sound in solids: Effects of optical and thermal parameters. Ultrasonics, 2016, 69, 279-284.	3.9	11
36	Ground Vibration Boom from High-Speed Trains. Journal of Low Frequency Noise Vibration and Active Control. 1999. 18, 207-218.	2.9	10

VICTOR V KRYLOV

#	Article	IF	CITATIONS
37	GENERATION OF GROUND ELASTIC WAVES BY ROAD VEHICLES. Journal of Computational Acoustics, 2001, 09, 919-933.	1.0	10
38	Simplified Modelling of Vehicle Interior Noise: Comparison of Analytical, Numerical and Experimental Approaches. Journal of Low Frequency Noise Vibration and Active Control, 2006, 25, 69-92.	2.9	10
39	Acoustic Black Holes for Flexural Waves: A Smart Approach to Vibration Damping. Procedia Engineering, 2017, 199, 56-61.	1.2	10
40	Structural–acoustic behaviour of automotive-type panels with dome-shaped indentations. Applied Acoustics, 2013, 74, 897-908.	3.3	8
41	Optimisation of the structural modes of automotive-type panels using line stiffeners and point masses to achieve weak acoustic radiation. Applied Acoustics, 2015, 93, 23-37.	3.3	8
42	Computation of Ground Vibrations Generated by Accelerating and Braking Road Vehicles. JVC/Journal of Vibration and Control, 1996, 2, 299-321.	2.6	7
43	GEOMETRICAL-ACOUSTICS CONSIDERATION OF THE FLEXURAL MODES IN IMMERSED ANISOTROPIC WEDGES. Journal of Sound and Vibration, 2000, 237, 427-434.	3.9	7
44	Finite Element Study of the Effect of Structural Modifications on Structure-borne Vehicle Interior Noise. JVC/Journal of Vibration and Control, 2009, 15, 483-496.	2.6	7
45	Wave-like aquatic propulsion of mono-hull marine vessels. Ocean Engineering, 2010, 37, 378-386.	4.3	7
46	Sound radiation of rectangular plates containing tapered indentations of power-law profile. Proceedings of Meetings on Acoustics, 2013, , .	0.3	7
47	Guided acoustic waves propagating at surfaces, interfaces and edges. , 2011, , .		6
48	Focusing of ground vibrations generated by high-speed trains travelling at trans-Rayleigh speeds. Soil Dynamics and Earthquake Engineering, 2017, 100, 389-395.	3.8	6
49	The `Bow-Wave' Effect in Soft Subgrade Beneath High Speed Rail Lines. , 2000, , 338.		5
50	Resilient Modulus of Soft Soil Beneath High-Speed Rail Lines. Transportation Research Record, 1999, 1687, 39-46.	1.9	4
51	An approximate theory for waves in a slender elastic wedge immersed in liquid. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2000, 456, 2179-2196.	2.1	4
52	Damping of flexural vibrations in plates containing ensembles of tapered indentations of power-law profile. Proceedings of Meetings on Acoustics, 2013, , .	0.3	4
53	Effect of Tunnel Diameter on Ground Vibrations Generated by Underground. Journal of Low Frequency Noise Vibration and Active Control, 2000, 19, 17-25.	2.9	3
54	Recent developments in the theory and applications of 'acoustic black holes'. , 2013, , .		3

54 Recent developments in the theory and applications of #x2018; acoustic black holes #x2019; ., 2013, ,.

VICTOR V KRYLOV

#	Article	IF	CITATIONS
55	Investigation of environmental low-frequency noise. Applied Acoustics, 1997, 51, 33-51.	3.3	2
56	PROPAGATION OF LOCALIZED VIBRATION MODES ALONG EDGES OF IMMERSED WEDGE-LIKE STRUCTURES: GEOMETRICAL-ACOUSTICS APPROACH. Journal of Computational Acoustics, 1999, 07, 59-70.	1.0	2
57	Commentary on Discussion of â€~On the theory of standing waves in tyres at high vehicle speeds' by V.V. Krylov and O. Gilbert, Journal of Sound and Vibration 329 (2010) 4398–4408. Journal of Sound and Vibration, 2013, 332, 7290-7292.	3.9	2
58	Damping of flexural vibrations in glass fibre composite plates and honeycomb sandwich panels containing indentations of power-law profile. Proceedings of Meetings on Acoustics, 2013, , .	0.3	2
59	Reduced-scale ultrasonic modelling of Rayleigh wave transmission over seismic barriers formed by periodic arrays of vertical holes. Noise Control Engineering Journal, 2018, 66, 33-44.	0.3	2
60	Comments on â€~ã€~Effect of the surface free energy on the behaviour of surface and guided wavesâ€, by V. Vlasie Belloncle, M. Rousseau, Ultrasonics, 45 (2006) 188–195. Ultrasonics, 2014, 54, 2-3.	3.9	1
61	On the role of nonlinear distortion in the theory of wave-like aquatic propulsion. Ocean Engineering, 2017, 145, 15-23.	4.3	1
62	Generation of Rayleigh-type Waves on Plate Edges by Laser-initiated Airborne Shock Waves. Acta Acustica United With Acustica, 2010, 96, 843-850.	0.8	0
63	Comments on â€~ã€~Basic properties of Rayleigh surface wave propagation along curved surfacesâ€; by F. Jin, Z. Wang, K. Kishimoto, International Journal of Engineering Science 43 (2005) 250–261. International Journal of Engineering Science, 2010, 48, 2108-2109.	5.0	Ο
64	Comments on Chapter 12 of â€~ã€~Railway Noise and Vibration: Mechanisms, Modelling and Means of Controlâ€; by D. Thompson (with contributions from C. Jones and PE. Gautier), Elsevier, 2009. Applied Acoustics, 2011, 72, 785-786.	3.3	0
65	Remarks on reply to comments on Chapter 12 of â€~â€~Railway Noise and Vibration: Mechanisms, Modelling and Means of Control'', by D. Thompson (with contributions from C. Jones and PE. Gautier), Elsevier, 2009. Applied Acoustics, 2011, 72, 789.	3.3	Ο
66	Quasi-flat acoustic absorber enhanced by metamaterials. Proceedings of Meetings on Acoustics, 2015, ,	0.3	0
67	Stochastically rough surfaces as seismic barriers against railway-induced ground vibrations. , 2019, , 337-358.		О
68	On the theory of smooth topographic waveguides for Rayleigh waves. , 2019, , .		0
69	New approach to investigation of resonant vibrations of noncircular shells based on the theory of coupled waveguides. Journal of Mechanics of Materials and Structures, 2007, 2, 1761-1771.	0.6	О