Maharaja Pounsamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8741840/publications.pdf

Version: 2024-02-01

18	425	12 h-index	17
papers	citations		g-index
18	18	18	606 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Hydroxyl radical generation by cactus-like copper oxide nanoporous carbon catalysts for microcystin-LR environmental remediation. Catalysis Science and Technology, 2016, 6, 530-544.	2.1	58
2	Three dimensional electro catalytic oxidation of aniline by boron doped mesoporous activated carbon. Journal of Industrial and Engineering Chemistry, 2015, 21, 942-950.	2.9	48
3	Process optimization for the treatment of pharmaceutical wastewater catalyzed by poly sulpha sponge. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1739-1747.	2.7	45
4	Immobilization of Bacillus sp. in mesoporous activated carbon for degradation of sulphonated phenolic compound in wastewater. Materials Science and Engineering C, 2013, 33, 735-745.	3.8	33
5	Oxidation of refractory organics by heterogeneous Fenton to reduce organic load in tannery wastewater. Clean Technologies and Environmental Policy, 2013, 15, 245-253.	2.1	33
6	Production, purification and immobilization of pectinase from Aspergillus ibericus onto functionalized nanoporous activated carbon (FNAC) and its application on treatment of pectin containing wastewater. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, 43-54.	1.8	31
7	Response surface modeling for optimization heterocatalytic Fenton oxidation of persistence organic pollution in high total dissolved solid containing wastewater. Environmental Science and Pollution Research, 2014, 21, 1489-1502.	2.7	26
8	Sequential oxic-anoxic bio reactor for the treatment of tannery saline wastewater using halophilic and filamentous bacteria. Journal of Water Process Engineering, 2017, 18, 47-57.	2.6	22
9	Preparation of light weight constructional materials from chrome containing buffing dust solid waste generated in leather industry. Journal of Material Cycles and Waste Management, 2017, 19, 928-938.	1.6	21
10	Bioactive prodigiosin-impregnated cellulose matrix for the removal of pathogenic bacteria from aqueous solution. RSC Advances, 2015, 5, 68621-68631.	1.7	19
11	Simultaneous removal of NH ₄ ⁺ -N and refractory organics through sequential heterogeneous Fenton oxidation process and struvite precipitation: kinetic study. RSC Advances, 2016, 6, 4250-4261.	1.7	17
12	A novel protease-immobilized carbon catalyst for the effective fragmentation of proteins in high-TDS wastewater generated in tanneries: Spectral and electrochemical studies. Environmental Research, 2019, 172, 408-419.	3.7	17
13	Advanced oxidation of catechol in reverse osmosis concentrate generated in leather wastewater by Cu–graphite electrode. International Journal of Environmental Science and Technology, 2016, 13, 2143-2152.	1.8	12
14	Treatment of tannery saline wastewater by using effective immobilized protease catalyst produced from salt tolerant Enterococcus feacalis. Journal of Environmental Chemical Engineering, 2017, 5, 2042-2055.	3.3	11
15	Removal of Fat Components in High TDS Leather Wastewater by Saline-Tolerant Lipase-Assisted Nanoporous-Activated Carbon. Applied Biochemistry and Biotechnology, 2019, 187, 474-492.	1.4	10
16	Synthesis of Surface-Modified Iron Oxides for the Solvent-Free Recovery of Bacterial Bioactive Compound Prodigiosin and Its Algicidal Activity. Journal of Physical Chemistry B, 2016, 120, 9685-9696.	1.2	8
17	Bio removal of proteins, lipids and mucopolysaccharides in tannery hyper saline wastewater using halophilic bacteria. Journal of Water Process Engineering, 2020, 38, 101674.	2.6	7
18	Removal of glycosaminoglycans present in tannery saline soak wastewater using integrated biological reactor and amylase immobilised reactor., 0, 156, 189-203.		7