Ifra Marriam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8741344/publications.pdf Version: 2024-02-01

Ιέρν Μλορινμ

#	Article	IF	CITATIONS
1	Multifunctional, Bioinspired, and Moisture Responsive Graphene Oxide/Tapioca Starch Nanocomposites. Advanced Materials Technologies, 2022, 7, 2100447.	3.0	10
2	Multistimulus-Responsive Graphene Oxide/Fe ₃ O ₄ /Starch Soft Actuators. ACS Applied Materials & Interfaces, 2022, 14, 16772-16779.	4.0	18
3	Circular Economy and Sustainability of the Clothing and Textile Industry. Materials Circular Economy, 2021, 3, 1.	1.6	64
4	Janus hybrid sustainable all-cellulose nanofiber sponge for oil-water separation. International Journal of Biological Macromolecules, 2021, 185, 997-1004.	3.6	33
5	Preparation of bioinspired graphene oxide/PMMA nanocomposite with improved mechanical properties. Composites Science and Technology, 2021, 216, 109046.	3.8	12
6	Techniques enabling inorganic materials into wearable fiber/yarn and flexible lithium-ion batteries. Energy Storage Materials, 2021, 43, 62-84.	9.5	25
7	Bioinspired microstructure-reorganized behavior of carbon nanotube yarn induced by cyclic stretching training. Journal of Materials Chemistry C, 2020, 8, 117-123.	2.7	16
8	Polyindole batteries and supercapacitors. Energy Storage Materials, 2020, 33, 336-359.	9.5	66
9	Experimental and theoretical study on the strain rate dependence of the mechanical properties of Twaron fiber tows with different fiber fineness. Textile Reseach Journal, 2019, 89, 2395-2405.	1.1	2
10	Critical insight: challenges and requirements of fibre electrodes for wearable electrochemical energy storage. Energy and Environmental Science, 2019, 12, 2148-2160.	15.6	104
11	Highly efficient photovoltaic energy storage hybrid system based on ultrathin carbon electrodes designed for a portable and flexible power source. Journal of Power Sources, 2019, 422, 196-207.	4.0	24
12	Quasi-static and dynamic interfacial evaluations of plasma functionalized carbon nanotube fiber. Applied Surface Science, 2019, 465, 795-801.	3.1	22
13	Synergistic effect of CNT films impregnated with CNT modified epoxy solution towards boosted interfacial bonding and functional properties of the composites. Composites Part A: Applied Science and Manufacturing, 2018, 110, 1-10.	3.8	37
14	Surface Self-Assembly of Functional Electroactive Nanofibers on Textile Yarns as a Facile Approach toward Super Flexible Energy Storage. ACS Applied Energy Materials, 2018, 1, 377-386.	2.5	47
15	Polyester@MXene nanofibers-based yarn electrodes. Journal of Power Sources, 2018, 396, 683-690.	4.0	147
16	A bottom-up approach to design wearable and stretchable smart fibers with organic vapor sensing behaviors and energy storage properties. Journal of Materials Chemistry A, 2018, 6, 13633-13643.	5.2	55
17	The Current Working Conditions in Ugandan Apparel Assembly Plants. Safety and Health at Work, 2017, 8, 378-385.	0.3	7
18	Green approach to fabricate Polyindole composite nanofibers for energy and sensor applications. Materials Letters, 2017, 209, 400-403.	1.3	40