Sarah E Gilbert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8741205/publications.pdf

Version: 2024-02-01

201674 168389 2,875 59 27 53 citations h-index g-index papers 60 60 60 1705 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Evolution of a hydrothermal ore-forming system recorded by sulfide mineral chemistry: a case study from the Plaka Pb–Zn–Ag Deposit, Lavrion, Greece. Mineralium Deposita, 2022, 57, 417-438.	4.1	38
2	Unraveling the histories of Proterozoic shales through <i>in situ</i> Rb-Sr dating and trace element laser ablation analysis. Geology, 2022, 50, 66-70.	4.4	13
3	<i>In situ</i> laser ablation Lu–Hf geochronology of garnet across the Western Gneiss Region: campaign-style dating of metamorphism. Journal of the Geological Society, 2022, 179, .	2.1	15
4	Constraints from in-situ Rb-Sr dating on the timing of tectono-thermal events in the Umm Farwah shear zone and associated Cu-Au mineralisation in the Southern Arabian Shield, Saudi Arabia. Journal of Asian Earth Sciences, 2022, 224, 105037.	2.3	10
5	Detrital apatite <scp>Lu–Hf</scp> and <scp>U–Pb</scp> geochronology applied to the southwestern Siberian margin. Terra Nova, 2022, 34, 201-209.	2.1	9
6	Early Evolution of the Adelaide Superbasin. Geosciences (Switzerland), 2022, 12, 154.	2.2	5
7	In situ Lu–Hf phosphate geochronology: Progress towards a new tool for space exploration. Geoscience Frontiers, 2022, 13, 101375.	8.4	2
8	Textural and geochemical analysis of celestine and sulfides constrain Sr-(Pb-Zn) mineralization in the Shizilishan deposit, eastern China. Ore Geology Reviews, 2022, 144, 104814.	2.7	5
9	Laser-ablation Lu-Hf dating reveals Laurentian garnet in subducted rocks from southern Australia. Geology, 2022, 50, 837-842.	4.4	10
10	In situ Lu–Hf geochronology of calcite. Geochronology, 2022, 4, 353-372.	2.5	13
10	In situ Lu–Hf geochronology of calcite. Geochronology, 2022, 4, 353-372. Indium distribution in sphalerite from sulfide–oxide–silicate skarn assemblages: a case study of the Dulong Zn–Sn–In deposit, Southwest China. Mineralium Deposita, 2021, 56, 307-324.	2.5	13 53
	Indium distribution in sphalerite from sulfide–oxide–silicate skarn assemblages: a case study of the		
11	Indium distribution in sphalerite from sulfide–oxide–silicate skarn assemblages: a case study of the Dulong Zn–Sn–In deposit, Southwest China. Mineralium Deposita, 2021, 56, 307-324. A Synthetic Haematite Reference Material for LAâ€ICPâ€MS Uâ€Pb Geochronology and Application to Iron	4.1	53
11 12	Indium distribution in sphalerite from sulfide–oxide–silicate skarn assemblages: a case study of the Dulong Zn–Sn–In deposit, Southwest China. Mineralium Deposita, 2021, 56, 307-324. A Synthetic Haematite Reference Material for LAâ€iCPâ€MS Uâ€Pb Geochronology and Application to Iron Oxideâ€Cuâ€Au Systems. Geostandards and Geoanalytical Research, 2021, 45, 143-159. Assessment of elemental fractionation and matrix effects during <i>in situ</i> Rb–Sr dating of phlogopite by LA-ICP-MS/MS: implications for the accuracy and precision of mineral ages. Journal of	4.1 3.1	53 3
11 12 13	Indium distribution in sphalerite from sulfide–oxide–silicate skarn assemblages: a case study of the Dulong Zn–Sn–In deposit, Southwest China. Mineralium Deposita, 2021, 56, 307-324. A Synthetic Haematite Reference Material for LAâ€iCPâ€MS Uâ€Pb Geochronology and Application to Iron Oxideâ€Cuâ€Au Systems. Geostandards and Geoanalytical Research, 2021, 45, 143-159. Assessment of elemental fractionation and matrix effects during ⟨i⟩in situ⟨li⟩ Rb–Sr dating of phlogopite by LA-ICP-MS/MS: implications for the accuracy and precision of mineral ages. Journal of Analytical Atomic Spectrometry, 2021, 36, 322-344. Effect of Selenium and Iodine on Oxidative Stress in the First Trimester Human Placenta Explants.	4.1 3.1 3.0	53 3 37
11 12 13	Indium distribution in sphalerite from sulfide–oxide–silicate skarn assemblages: a case study of the Dulong Zn–Sn–In deposit, Southwest China. Mineralium Deposita, 2021, 56, 307-324. A Synthetic Haematite Reference Material for LAâ€ICPâ€MS Uâ€Pb Geochronology and Application to Iron Oxideâ€Cuâ€Au Systems. Geostandards and Geoanalytical Research, 2021, 45, 143-159. Assessment of elemental fractionation and matrix effects during ⟨i⟩in situ⟨i⟩ Rb–Sr dating of phlogopite by LA-ICP-MS/MS: implications for the accuracy and precision of mineral ages. Journal of Analytical Atomic Spectrometry, 2021, 36, 322-344. Effect of Selenium and Iodine on Oxidative Stress in the First Trimester Human Placenta Explants. Nutrients, 2021, 13, 800. Development and Application of Synthetic Hematite Reference Material for U-Pb Geochronology.	4.1 3.1 3.0 4.1	533379
11 12 13 14	Indium distribution in sphalerite from sulfide–oxide–silicate skarn assemblages: a case study of the Dulong Zn–Sn–In deposit, Southwest China. Mineralium Deposita, 2021, 56, 307-324. A Synthetic Haematite Reference Material for LAâ€ICPâ€MS Uâ€Pb Geochronology and Application to Iron Oxideâ€Cuâ€Au Systems. Geostandards and Geoanalytical Research, 2021, 45, 143-159. Assessment of elemental fractionation and matrix effects during ⟨i⟩in situ⟨li⟩ Rb–Sr dating of phlogopite by LA-ICP-MS/MS: implications for the accuracy and precision of mineral ages. Journal of Analytical Atomic Spectrometry, 2021, 36, 322-344. Effect of Selenium and Iodine on Oxidative Stress in the First Trimester Human Placenta Explants. Nutrients, 2021, 13, 800. Development and Application of Synthetic Hematite Reference Material for U-Pb Geochronology. Microscopy and Microanalysis, 2021, 27, 2742-2745. Geochemistry of Sphalerite from the Permian Volcanic-Hosted Massive Sulphide (VHMS) Deposits in the Tasik Chini Area, Peninsular Malaysia: Constraints for Ore Genesis. Minerals (Basel, Switzerland),	4.1 3.1 3.0 4.1	53 3 37 9

#	Article	IF	Citations
19	A laser ablation technique maps differences in elemental composition in roots of two barley cultivars subjected to salinity stress. Plant Journal, 2020, 101, 1462-1473.	5.7	10
20	Halogens in hydrothermal sphalerite record origin of ore-forming fluids. Geology, 2020, 48, 766-770.	4.4	21
21	Coupled U-Pb and Rb-Sr laser ablation geochronology trace Archean to Proterozoic crustal evolution in the Dharwar Craton, India. Precambrian Research, 2020, 343, 105709.	2.7	15
22	Removal of Hg interferences for common Pb correction when dating apatite and titanite by LA-ICP-MS/MS. Journal of Analytical Atomic Spectrometry, 2020, 35, 1472-1481.	3.0	13
23	Structural evolution and medium-temperature thermochronology of central Madagascar: implications for Gondwana amalgamation. Journal of the Geological Society, 2020, 177, 784-798.	2.1	17
24	Multivariate Statistical Analysis of Trace Elements in Pyrite: Prediction, Bias and Artefacts in Defining Mineral Signatures. Minerals (Basel, Switzerland), 2020, 10, 61.	2.0	14
25	Rapid, competitive radium uptake in strontium, barium, and lead sulfates during sulfuric acid leaching. Applied Geochemistry, 2020, 115, 104549.	3.0	11
26	Trace element substitution and grain-scale compositional heterogeneity in enargite. Ore Geology Reviews, 2019, 111, 103004.	2.7	10
27	Intermobility of barium, strontium, and lead in chloride and sulfate leach solutions. Geochemical Transactions, 2019, 20, 4.	0.7	3
28	Rare Earth Element Phosphate Minerals from the Olympic Dam Cu-U-Au-Ag Deposit, South Australia: Recognizing Temporal-Spatial Controls On Ree Mineralogy in an Evolved IOCG System. Canadian Mineralogist, 2019, 57, 3-24.	1.0	15
29	Trace element distributions in (Cu)-Pb-Sb sulfosalts from the Gutaishan Au-Sb deposit, South China: Implications for formation of high fineness native gold. American Mineralogist, 2019, 104, 425-437.	1.9	11
30	A multi-technique evaluation of hydrothermal hematite U Pb isotope systematics: Implications for ore deposit geochronology. Chemical Geology, 2019, 513, 54-72.	3.3	36
31	Uptake of trace elements by baryte during copper ore processing: A case study from Olympic Dam, South Australia. Minerals Engineering, 2019, 135, 83-94.	4.3	13
32	Synthesis of U-Pb doped hematite using a hydrated ferric oxide approach. Journal of Crystal Growth, 2019, 513, 48-57.	1.5	3
33	Thermochronological and geochemical footprints of post-orogenic fluid alteration recorded in apatite: Implications for mineralisation in the Uzbek Tian Shan. Gondwana Research, 2019, 71, 1-15.	6.0	39
34	Iron-oxides constrain BIF evolution in terranes with protracted geological histories: The Iron Count prospect, Middleback Ranges, South Australia. Lithos, 2019, 324-325, 20-38.	1.4	12
35	Textures and trace element composition of pyrite from the Bukit Botol volcanic-hosted massive sulphide deposit, Peninsular Malaysia. Journal of Asian Earth Sciences, 2018, 158, 173-185.	2.3	26
36	Syn-tectonic sulphide remobilization and trace element redistribution at the Falun pyritic Zn-Pb-Cu-(Au-Ag) sulphide deposit, Bergslagen, Sweden. Ore Geology Reviews, 2018, 96, 48-71.	2.7	32

3

#	Article	IF	Citations
37	Matrix dependency for oxide production rates by LA-ICP-MS. Journal of Analytical Atomic Spectrometry, 2017, 32, 638-646.	3.0	10
38	Textures and U-W-Sn-Mo signatures in hematite from the Olympic Dam Cu-U-Au-Ag deposit, South Australia: Defining the archetype for IOCG deposits. Ore Geology Reviews, 2017, 91, 173-195.	2.7	54
39	Rare Earth Element Fluorocarbonate Minerals from the Olympic Dam Cu-U-Au-Ag Deposit, South Australia. Minerals (Basel, Switzerland), 2017, 7, 202.	2.0	26
40	Cu–Ni–PGE fertility of the Yoko-Dovyren layered massif (northern Transbaikalia, Russia): thermodynamic modeling of sulfide compositions in low mineralized dunite based on quantitative sulfide mineralogy. Mineralium Deposita, 2016, 51, 993-1011.	4.1	29
41	Concentration of Particulate Platinum-Group Minerals during Magma Emplacement; a Case Study from the Merensky Reef, Bushveld Complex. Journal of Petrology, 2015, 56, 113-159.	2.8	29
42	Hydrothermal and metamorphic fluid-rock interaction associated with hypogene "hard―iron ore mineralisation in the Quadrilátero FerrÃfero, Brazil: Implications from in-situ laser ablation ICP-MS iron oxide chemistry. Ore Geology Reviews, 2015, 69, 325-351.	2.7	32
43	Fractionation of sulphur relative to iron during laser ablation-ICP-MS analyses of sulphide minerals: implications for quantification. Journal of Analytical Atomic Spectrometry, 2014, 29, 1024-1033.	3.0	46
44	Optimisation of laser parameters for the analysis of sulphur isotopes in sulphide minerals by laser ablation ICP-MS. Journal of Analytical Atomic Spectrometry, 2014, 29, 1042-1051.	3.0	96
45	LA–ICP–MS and EPMA studies on the Fe–S–As minerals from the Jinlongshan gold deposit, Qinling Orogen, China: implications for oreâ€forming processes. Geological Journal, 2014, 49, 482-500.	1.3	32
46	Evidence for an Intrabasinal Source and Multiple Concentration Processes in the Formation of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa. Economic Geology, 2013, 108, 1215-1241.	3.8	63
47	A Comparative Study of Five Reference Materials and the Lombard Meteorite for the Determination of the Platinumâ€Group Elements and Gold by LAâ€ICPâ€MS. Geostandards and Geoanalytical Research, 2013, 37, 51-64.	3.1	53
48	Geometallurgy of the Pebble Porphyry Copper-Gold-Molybdenum Deposit, Alaska: Implications for Gold Distribution and Paragenesis. Economic Geology, 2013, 108, 463-482.	3.8	60
49	Gold-telluride nanoparticles revealed in arsenic-free pyrite. American Mineralogist, 2012, 97, 1515-1518.	1.9	150
50	Multivariate Analysis of an LA-ICP-MS Trace Element Dataset for Pyrite. Mathematical Geosciences, 2012, 44, 823-842.	2.4	90
51	LA-ICPMS and EPMA studies of pyrite, arsenopyrite and loellingite from the Bhukia-Jagpura gold prospect, southern Rajasthan, India: Implications for ore genesis and gold remobilization. Chemical Geology, 2012, 326-327, 72-87.	3.3	80
52	Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effects. Geochemistry: Exploration, Environment, Analysis, 2011, 11, 51-60.	0.9	211
53	Minor and trace elements in bornite and associated Cu–(Fe)-sulfides: A LA-ICP-MS studyBornite mineral chemistry. Geochimica Et Cosmochimica Acta, 2011, 75, 6473-6496.	3.9	118
54	Transgenerational marking of cephalopods with an enriched barium isotope: a promising tool for empirically estimating post-hatching movement and population connectivity. ICES Journal of Marine Science, 2010, 67, 1372-1380.	2.5	10

SARAH E GILBERT

#	Article	IF	CITATIONS
55	In situ Pb-isotope analysis of pyrite by laser ablation (multi-collector and quadrupole) ICPMS. Chemical Geology, 2009, 262, 344-354.	3.3	74
56	Development of Framboidal Pyrite During Diagenesis, Low-Grade Regional Metamorphism, and Hydrothermal Alteration. Economic Geology, 2009, 104, 1143-1168.	3.8	84
57	Gold and Trace Element Zonation in Pyrite Using a Laser Imaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits. Economic Geology, 2009, 104, 635-668.	3.8	748
58	Age and pyrite Pb-isotopic composition of the giant Sukhoi Log sediment-hosted gold deposit, Russia. Geochimica Et Cosmochimica Acta, 2008, 72, 2377-2391.	3.9	151
59	The effects of hardpan layers on the water chemistry from the leaching of pyrrhotite-rich tailings material. Environmental Geology, 2003, 44, 687-697.	1.2	30