
Hongtao Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8741120/publications.pdf Version: 2024-02-01

ΗΟΝΟΤΛΟ ΣΗΝ

#	Article	IF	CITATIONS
1	General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nature Catalysis, 2018, 1, 63-72.	34.4	1,476
2	Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science, 2017, 356, 599-604.	12.6	1,229
3	High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nature Communications, 2014, 5, 4526.	12.8	586
4	Highly thermally conductive and mechanically strong graphene fibers. Science, 2015, 349, 1083-1087.	12.6	564
5	Hierarchical 3D electrodes for electrochemical energy storage. Nature Reviews Materials, 2019, 4, 45-60.	48.7	554
6	Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nature Catalysis, 2019, 2, 495-503.	34.4	464
7	Double-negative-index ceramic aerogels for thermal superinsulation. Science, 2019, 363, 723-727.	12.6	429
8	Largeâ€Area Freestanding Graphene Paper for Superior Thermal Management. Advanced Materials, 2014, 26, 4521-4526.	21.0	386
9	Flexible Pillared Grapheneâ€Paper Electrodes for Highâ€Performance Electrochemical Supercapacitors. Small, 2012, 8, 452-459.	10.0	297
10	Atomic Layer Deposition of TiO ₂ on Graphene for Supercapacitors. Journal of the Electrochemical Society, 2012, 159, A364-A369.	2.9	186
11	Morphology controlled high performance supercapacitor behaviour of the Ni–Co binary hydroxide system. Journal of Power Sources, 2013, 238, 150-156.	7.8	175
12	Flexible free-standing graphene–TiO2 hybrid paper for use as lithium ion battery anode materials. Carbon, 2013, 51, 322-326.	10.3	156
13	High responsivity, fast ultraviolet photodetector fabricated from ZnO nanoparticle–graphene core–shell structures. Nanoscale, 2013, 5, 3664.	5.6	154
14	Rapid synthesis of nitrogen-doped graphene for a lithium ion battery anode with excellent rate performance and super-long cyclic stability. Physical Chemistry Chemical Physics, 2014, 16, 1060-1066.	2.8	146
15	Graphene-Wrapped Mesoporous Cobalt Oxide Hollow Spheres Anode for High-Rate and Long-Life Lithium Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 2263-2272.	3.1	119
16	Synthesis of ZnO quantum dot/graphene nanocomposites by atomic layer deposition with high lithium storage capacity. Journal of Materials Chemistry A, 2014, 2, 7319-7326.	10.3	117
17	Organic–Inorganic Heterointerfaces for Ultrasensitive Detection of Ultraviolet Light. Nano Letters, 2015, 15, 3787-3792.	9.1	117
18	Advanced Phase Change Composite by Thermally Annealed Defect-Free Graphene for Thermal Energy Storage. ACS Applied Materials & Interfaces, 2014, 6, 15262-15271.	8.0	113

Hongtao Sun

#	Article	IF	CITATIONS
19	Pseudocapacitance of Amorphous TiO ₂ Thin Films Anchored to Graphene and Carbon Nanotubes Using Atomic Layer Deposition. Journal of Physical Chemistry C, 2013, 117, 22497-22508.	3.1	102
20	Temperature-Dependent Morphology Evolution and Surface Plasmon Absorption of Ultrathin Gold Island Films. Journal of Physical Chemistry C, 2012, 116, 9000-9008.	3.1	82
21	Differential Surface Elemental Distribution Leads to Significantly Enhanced Stability of PtNi-Based ORR Catalysts. Matter, 2019, 1, 1567-1580.	10.0	82
22	ZnO/graphene nanocomposite fabricated by high energy ball milling with greatly enhanced lithium storage capability. Electrochemistry Communications, 2013, 34, 312-315.	4.7	76
23	Atomic layer deposition of amorphous TiO ₂ on graphene as an anode for Li-ion batteries. Nanotechnology, 2013, 24, 424002.	2.6	76
24	A New Y3Al5O12 Phase Produced by Liquid-Feed Flame Spray Pyrolysis (LF-FSP). Advanced Materials, 2005, 17, 830-833.	21.0	72
25	A hyperaccumulation pathway to three-dimensional hierarchical porous nanocomposites for highly robust high-power electrodes. Nature Communications, 2016, 7, 13432.	12.8	68
26	High quality ZnO–TiO 2 core–shell nanowires for efficient ultraviolet sensing. Applied Surface Science, 2014, 314, 872-876.	6.1	63
27	High-Performance Ultraviolet Photodetector Based on Organic–Inorganic Hybrid Structure. ACS Applied Materials & Interfaces, 2014, 6, 14690-14694.	8.0	62
28	Amorphous vanadium oxide coating on graphene by atomic layer deposition for stable high energy lithium ion anodes. Chemical Communications, 2014, 50, 10703.	4.1	61
29	Microstructural Analysis of a Laser-Processed Zr-Based Bulk Metallic Glass. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1752-1757.	2.2	60
30	Stabilizing an amorphous V ₂ O ₅ /carbon nanotube paper electrode with conformal TiO ₂ coating by atomic layer deposition for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 537-544.	10.3	57
31	Enhanced Ultraviolet Emission from Poly(vinyl alcohol) ZnO Nanoparticles Using a SiO ₂ –Au Core/Shell Structure. Nano Letters, 2012, 12, 5840-5844.	9.1	55
32	Amorphous Ultrathin TiO ₂ Atomic Layer Deposition Films on Carbon Nanotubes as Anodes for Lithium Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A974-A981.	2.9	53
33	Laser deposition of a Cu-based metallic glass powder on a Zr-based glass substrate. Journal of Materials Research, 2008, 23, 2692-2703.	2.6	52
34	3D WO3 nanowires/graphene nanocomposite with improved reversible capacity and cyclic stability for lithium ion batteries. Materials Letters, 2013, 108, 29-32.	2.6	51
35	Porous Fe2O3 nanorods anchored on nitrogen-doped graphenes and ultrathin Al2O3 coating by atomic layer deposition for long-lived lithium ion battery anode. Carbon, 2014, 76, 141-147.	10.3	46
36	Flexible, thorn-like ZnO-multiwalled carbon nanotube hybrid paper for efficient ultraviolet sensing and photocatalyst applications. Nanoscale, 2014, 6, 13630-13636.	5.6	44

Hongtao Sun

#	Article	IF	CITATIONS
37	Bulk Iodoapatite Ceramic Densified by Spark Plasma Sintering with Exceptional Thermal Stability. Journal of the American Ceramic Society, 2014, 97, 2409-2412.	3.8	43
38	Ultra-high Areal Capacity Realized in Three-Dimensional Holey Graphene/SnO2 Composite Anodes. IScience, 2019, 19, 728-736.	4.1	40
39	Effective Temperature Sensing by Irreversible Morphology Evolution of Ultrathin Gold Island Films. Journal of Physical Chemistry C, 2013, 117, 3366-3373.	3.1	34
40	Epitaxial Magnetic Perovskite Nanostructures. Advanced Materials, 2005, 17, 2869-2872.	21.0	33
41	Electrospray deposition of a Co ₃ O ₄ nanoparticles–graphene composite for a binder-free lithium ion battery electrode. RSC Advances, 2014, 4, 1521-1525.	3.6	29
42	Hierarchical Porous Carbon Derived from Covalent Triazine Frameworks for High Mass Loading Supercapacitors. , 2019, 1, 320-326.		29
43	Observation of Strained PdO in an Aged Pd/Ceria-Zirconia Catalyst. Catalysis Letters, 2002, 79, 99-105.	2.6	26
44	ZnO quantum dots-graphene composite for efficient ultraviolet sensing. Materials Letters, 2013, 112, 165-168.	2.6	21
45	Silica–Gold Core–Shell Nanosphere for Ultrafast Dynamic Nanothermometer. Advanced Functional Materials, 2014, 24, 2389-2395.	14.9	21
46	Formation and coarsening of Ga droplets on focused-ion-beam irradiated GaAs surfaces. Applied Physics Letters, 2009, 95, .	3.3	20
47	Facile and scalable preparation of 3D SnO ₂ /holey graphene composite frameworks for stable lithium storage at a high mass loading level. Inorganic Chemistry Frontiers, 2019, 6, 1367-1373.	6.0	19
48	Displacive radiation-induced structural contraction in nanocrystalline ZrN. Applied Physics Letters, 2012, 101, 041904.	3.3	18
49	Surface plasmon resonances of Ga nanoparticle arrays. Applied Physics Letters, 2012, 101, 081905.	3.3	17
50	Aging-Induced Metal Redistribution in Bimetallic Catalysts. Catalysis Letters, 2002, 81, 1-7.	2.6	14
51	Vacuumâ€Ðried 3D Holey Graphene Frameworks Enabling High Mass Loading and Fast Charge Transfer for Advanced Batteries. Energy Technology, 2020, 8, 1901002.	3.8	8
52	Ultrathin gold island films for time-dependent temperature sensing. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	4
53	Three-Dimensional Holey-Graphene/Niobia Composite Architectures for Ultrahigh-Rate Energy Storage. ECS Meeting Abstracts, 2017, , .	0.0	2
54	Influence of Implanted Aluminum Ions on the Oxidation Behavior of M5 Alloy at 500°C. Oxidation of Metals, 2006, 65, 377-390.	2.1	1

#	Article	IF	CITATIONS
55	GRAPHENE AND GRAPHENE-BASED NANOCOMPOSITES: SYNTHESIS AND SUPERCAPACITOR APPLICATIONS. , 2012, , .		Ο
56	Transmission Electron Microscopy Study of Eu-Doped Y ₂ O ₃ Nanosheets and Nanotubes. Nanoscience and Nanotechnology Letters, 2011, 3, 314-318.	0.4	0