
Pavol Sajgalik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8741066/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Relationship between Microstructure, Toughening Mechanisms, and Fracture Toughness of Reinforced Silicon Nitride Ceramics. Journal of the American Ceramic Society, 1995, 78, 2619-2624.	1.9	158
2	Two-Stage Sintering of Alumina with Submicrometer Grain Size. Journal of the American Ceramic Society, 2007, 90, 330-332.	1.9	139
3	Magnetic properties of Co 1â^'x Zn x Fe 2 O 4 spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling. Journal of Magnetism and Magnetic Materials, 2015, 378, 190-199.	1.0	113
4	The properties of Ti-doped ZnO films deposited by simultaneous RF and DC magnetron sputtering. Surface and Coatings Technology, 2005, 191, 286-292.	2.2	98
5	The properties of heavily Al-doped ZnO films before and after annealing in the different atmosphere. Surface and Coatings Technology, 2004, 185, 254-263.	2.2	95
6	Effects of substrate temperature on the properties of heavily Al-doped ZnO films by simultaneous r.f. and d.c. magnetron sputtering. Surface and Coatings Technology, 2005, 190, 39-47.	2.2	89
7	SiC/Si3N4 nano/micro-composite — processing, RT and HT mechanical properties. Journal of the European Ceramic Society, 2000, 20, 453-462.	2.8	82
8	Thermal shock resistance and fracture toughness of liquid-phase-sintered SiC-based ceramics. Journal of the European Ceramic Society, 2009, 29, 2387-2394.	2.8	73
9	Porous silicon nitride ceramics designed for bone substitute applications. Ceramics International, 2013, 39, 8355-8362.	2.3	60
10	Nanoindentation and tribology of a (Hf-Ta-Zr-Nb-Ti)C high-entropy carbide. Journal of the European Ceramic Society, 2021, 41, 5417-5426.	2.8	60
11	The influence of additives on microstrucutre of sub-micron alumina ceramics prepared by two-stage sintering. Journal of the European Ceramic Society, 2012, 32, 1965-1970.	2.8	58
12	New approach for distribution of carbon nanotubes in alumina matrix. Journal of the European Ceramic Society, 2014, 34, 1845-1851.	2.8	58
13	Nano- versus macro-hardness of liquid phase sintered SiC. Journal of the European Ceramic Society, 2005, 25, 529-534.	2.8	56
14	Microstructure and mechanical properties of hot pressed Al2O3/SiC nanocomposites. Journal of the European Ceramic Society, 2013, 33, 2291-2298.	2.8	56
15	Low-cost preparation of Si3N4–SiC micro/nano composites by in-situ carbothermal reduction of silica in silicon nitride matrix. Journal of the European Ceramic Society, 2004, 24, 189-195.	2.8	49
16	Wear resistance of hot-pressed Si3N4/SiC micro/nanocomposites sintered with rare-earth oxide additives. Wear, 2010, 269, 867-874.	1.5	46
17	Rare-earth element doped Si3N4/SiC micro/nano-composites—RT and HT mechanical properties. Journal of the European Ceramic Society, 2010, 30, 1931-1944.	2.8	45
18	Thermal behavior, electrical conductivity and microstructure of hot pressed Al2O3/SiC nanocomposites. Ceramics International, 2014, 40, 14421-14429.	2.3	44

#	Article	IF	CITATIONS
19	Oxidation resistance of SiC ceramics prepared by different proceessing routes. Journal of the European Ceramic Society, 2016, 36, 3783-3793.	2.8	44
20	Additive-free hot-pressed silicon carbide ceramics—A material with exceptional mechanical properties. Journal of the European Ceramic Society, 2016, 36, 1333-1341.	2.8	43
21	Effect of the counterpart material on wear characteristics of silicon carbide ceramics. International Journal of Refractory Metals and Hard Materials, 2014, 44, 12-18.	1.7	40
22	Thermal shock resistance of Si3N4 and Si3N4–SiC ceramics with rare-earth oxide sintering additives. Journal of the European Ceramic Society, 2014, 34, 3301-3308.	2.8	40
23	Silicon carbide powder synthesis by chemical vapour deposition from silane/acetylene reaction system. Journal of the European Ceramic Society, 2000, 20, 1939-1946.	2.8	39
24	In-Situ Carbon Content Adjustment in Polysilazane Derived Amorphous SiCN Bulk Ceramics. Journal of the European Ceramic Society, 1999, 19, 1911-1921.	2.8	38
25	Rapid formation of α-sialon during spark plasma sintering: Its origin and implications. Journal of the European Ceramic Society, 2007, 27, 2541-2547.	2.8	37
26	Influence of various rare-earth oxide additives on microstructure and mechanical properties of silicon nitride based nanocomposites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4771-4778.	2.6	37
27	Effects of annealing on the properties of indium–tin oxide films prepared by ion beam sputtering. Surface and Coatings Technology, 2005, 192, 106-111.	2.2	36
28	Preparation of Euâ€Doped βâ€SiAlON Phosphors by Combustion Synthesis. Journal of the American Ceramic Society, 2008, 91, 3082-3085.	1.9	35
29	Corrosion behavior of silicon oxycarbide-based ceramic nanocomposites under hydrothermal conditions. International Journal of Materials Research, 2012, 103, 31-39.	0.1	35
30	Influence of rare-earth oxide additives on the oxidation resistance of Si3N4–SiC nanocomposites. Journal of the European Ceramic Society, 2013, 33, 2259-2268.	2.8	34
31	Effect of homogenization treatment on the fracture behaviour of silicon nitride/graphene nanoplatelets composites. Journal of the European Ceramic Society, 2014, 34, 3291-3299.	2.8	34
32	Anisotropy of functional properties of SiC composites with GNPs, GO and in-situ formed graphene. Journal of the European Ceramic Society, 2017, 37, 3731-3739.	2.8	33
33	Some tribological properties of a carbon-derived Si3N4/SiC nanocomposite. Journal of the European Ceramic Society, 2004, 24, 3431-3435.	2.8	30
34	Investigation of nanocrystal-(Ti1â^'xAlx)Ny/amorphous-Si3N4 nanolaminate films. Surface and Coatings Technology, 2005, 194, 119-127.	2.2	30
35	Influence of rare-earth oxide additives and SiC nanoparticles on the wear behaviour of Si3N4-based composites at temperatures up to 900°C. Wear, 2013, 300, 155-162.	1.5	29
36	Polysilazane derived micro/nano Si3N4/SiC composites. Journal of the European Ceramic Society, 2002, 22, 2963-2968.	2.8	27

#	Article	IF	CITATIONS
37	Nano/macro-hardness and fracture resistance of Si3N4/SiC composites with up to 13wt.% of SiC nano-particles. Journal of the European Ceramic Society, 2007, 27, 2145-2152.	2.8	27
38	Creep behavior of a carbon-derived Si3N4/SiC nanocomposite. Journal of the European Ceramic Society, 2004, 24, 3307-3315.	2.8	26
39	Machinability analysis of multi walled carbon nanotubes filled alumina composites in wire electrical discharge machining process. Journal of the European Ceramic Society, 2017, 37, 3107-3114.	2.8	26
40	\hat{l}_{\pm}/\hat{l}^2 Phase transformation of silicon nitride: homogeneous and heterogeneous nucleation. Journal of Materials Science Letters, 1993, 12, 1937-1939.	0.5	25
41	In vitro bioactivity of silicon nitride–hydroxyapatite composites. Ceramics International, 2015, 41, 8100-8108.	2.3	24
42	CaO–SiO2–Al2O3–Y2O3 glasses as model grain boundary phases for Si3N4 ceramics. Journal of the European Ceramic Society, 2007, 27, 429-436.	2.8	23
43	Electrically conductive silicon carbide with the addition of TiNbC. Journal of the European Ceramic Society, 2012, 32, 2513-2518.	2.8	23
44	Nanoindentation induced deformation anisotropy in β-Si 3 N 4 ceramic crystals. Journal of the European Ceramic Society, 2016, 36, 3059-3066.	2.8	23
45	Wire electrical discharge machinable SiC with GNPs and GO as the electrically conducting filler. Journal of the European Ceramic Society, 2019, 39, 2626-2633.	2.8	23
46	Layered Si3N4 composites with enhanced room temperature properties. Journal of Materials Science, 1996, 31, 4837-4842.	1.7	22
47	Multifunctional Si3N4/(β-SiAlON+TiN) layered composites. Journal of the European Ceramic Society, 2000, 20, 347-355.	2.8	22
48	Processing and mechanical properties of Si3N4 composites employing polymer-derived SiAlOC as sintering aid. Journal of the European Ceramic Society, 2010, 30, 759-767.	2.8	22
49	High thermal conductivity silicon nitride ceramics prepared by pressureless sintering with ternary sintering additives. International Journal of Applied Ceramic Technology, 2019, 16, 1399-1406.	1.1	22
50	Thermal and electrical properties of additive-free rapidly hot-pressed SiC ceramics. Journal of the European Ceramic Society, 2020, 40, 234-240.	2.8	22
51	Carbon reduction reaction in the Y2O3–SiO2 glass system at high temperature. Journal of the European Ceramic Society, 2001, 21, 2797-2801.	2.8	21
52	Electronic structure and energy level schemes of RE3+:LaSi3N5 and RE2+:LaSi3N5â^'xOx phosphors (RE=Ce, Pr, ND, Pm, Sm, Eu) from first principles. Journal of Luminescence, 2015, 164, 131-137.	1.5	21
53	Investigation of nanocrystal-(Ti,Al)Nx/amorphous-SiNy composite films by co-deposition process. Surface and Coatings Technology, 2004, 177-178, 209-214.	2.2	20
54	Enhanced Creep Resistant Silicon-Nitride-Based Nanocomposite. Journal of the American Ceramic Society, 2005, 88, 1500-1503.	1.9	20

#	Article	IF	CITATIONS
55	Corrosion of \hat{I}^2 -sialon-based ceramics by molten steel. Journal of the European Ceramic Society, 2007, 27, 2137-2143.	2.8	20
56	Carbothermal reduction and nitridation of powder pyrophyllite raw material. Journal of the European Ceramic Society, 2004, 24, 791-796.	2.8	19
57	Electrically conductive SiC–(Nb,Ti)ss–(Nb,Ti)Css cermet. Journal of the European Ceramic Society, 2006, 26, 1259-1266.	2.8	19
58	Mechanical and tribological properties of alumina-MWCNTs composites sintered by rapid hot-pressing. Journal of the European Ceramic Society, 2017, 37, 4821-4831.	2.8	18
59	Thermal properties of alumina–MWCNTs composites. Journal of the European Ceramic Society, 2015, 35, 1559-1567.	2.8	17
60	Surface and porous recast layer analysis in µ-EDM of MWCNT-Al ₂ O ₃ composites. Materials and Manufacturing Processes, 2019, 34, 567-579.	2.7	17
61	Highly electrically and thermally conductive silicon carbide-graphene composites with yttria and scandia additives. Journal of the European Ceramic Society, 2020, 40, 241-250.	2.8	17
62	Combustion synthesis of LaSi3N5:Eu2+ phosphor powders. Journal of the European Ceramic Society, 2011, 31, 151-157.	2.8	16
63	Preliminary investigations of the production of MgAlON bonded refractories. Journal of the European Ceramic Society, 2012, 32, 2013-2018.	2.8	16
64	Microstructure evolution and tribological properties of TiB2/Ni–Ta cermets. Journal of the European Ceramic Society, 2012, 32, 1941-1948.	2.8	16
65	Additive-free low temperature sintering of amorphous Si B C powders derived from boron-modified polycarbosilanes: Toward the design of SiC with tunable mechanical, electrical and thermal properties. Journal of the European Ceramic Society, 2020, 40, 2604-2612.	2.8	16
66	In Situ Preparation of Si3N4/SiC Nanocomposites for Cutting Tools Application. International Journal of Applied Ceramic Technology, 2006, 3, 41-46.	1.1	15
67	Corrosion of Structural Ceramics Under Subcritical Conditions in Aqueous Sodium Chloride Solution and in Deionized Water. Part I: Dissolution of Si ₃ N ₄ â€Based Ceramics. Journal of the American Ceramic Society, 2011, 94, 3035-3043.	1.9	15
68	The surface diffusion coefficients of MgO and Al2O3. Journal of Materials Science, 1987, 22, 4460-4464.	1.7	14
69	Microstructure and fracture-mechanical properties of carbon derived Si3N4+SiC nanomaterials. Materials Science and Engineering C, 2006, 26, 862-866.	3.8	14
70	Density functional study of structures and mechanical properties of Y-doped α-SiAlONs. Journal of the European Ceramic Society, 2008, 28, 995-1002.	2.8	14
71	Mechanical properties of carbon-derived Si3N4+SiC micro/nano-composite. International Journal of Refractory Metals and Hard Materials, 2009, 27, 438-442.	1.7	14
72	Bioactive silicon nitride by surface thermal treatment. Journal of the European Ceramic Society, 2020, 40, 1848-1858.	2.8	14

#	Article	IF	CITATIONS
73	Influence of hexagonal boron nitride nanosheets on phase transformation, microstructure evolution and mechanical properties of Si3N4 ceramics. Journal of the European Ceramic Society, 2021, 41, 5115-5126.	2.8	14
74	Structural development and properties of SiC-Si3N4 nano/microcomposites. Journal of Materials Science Letters, 1996, 15, 72-76.	0.5	13
75	Electronic Structure and Bulk Properties of β‧iAlONs. Journal of the American Ceramic Society, 2003, 86, 1162-1167.	1.9	13
76	Europiumâ€Doped <scp>LaSi₃N₅</scp> Ternary Nitride: Synthesis, Spectroscopy, Computed Electronic Structure and Band Gaps. Journal of the American Ceramic Society, 2011, 94, 4345-4351.	1.9	13
77	Properties of Î ² -silicon nitride whiskers. Journal of Materials Science Letters, 1992, 11, 208-211.	0.5	12
78	Corrosion of Structural Ceramics Under Subâ€Critical Conditions in Aqueous Sodium Chloride Solution and in Deionized Water. Part II: Dissolution of Al ₂ O ₃ â€Based Ceramics. Journal of the American Ceramic Society, 2011, 94, 3044-3052.	1.9	12
79	Deformation and Fracture of β‧ilicon Nitride Micropillars. Journal of the American Ceramic Society, 2015, 98, 374-377.	1.9	12
80	Silicon Nitride/Carbide Nano/Micro Composites for Room as well as High Temperature Applications. Key Engineering Materials, 2000, 175-176, 289-300.	0.4	11
81	Processing and properties of alumina–carbon nano fibre ceramic composites using standard ceramic technology. Ceramics International, 2011, 37, 3371-3379.	2.3	11
82	Low loss alumina dielectrics by aqueous tape casting: The influence of composition on the loss tangent. Ceramics International, 2012, 38, 3747-3755.	2.3	11
83	Cerium-doped LaSi3N5: Computed electronic structure and band gaps. Journal of the European Ceramic Society, 2014, 34, 2705-2712.	2.8	11
84	Lanthanide-doped LaSi 3 N 5 based phosphors: Ab initio study of electronic structures, band gaps, and energy level locations. Journal of Luminescence, 2016, 172, 83-91.	1.5	11
85	Identification of wire electrical discharge machinability of SiC sintered using rapid hot pressing technique. Ceramics International, 2020, 46, 17261-17271.	2.3	11
86	Wear behavior of (Mo–Nb–Ta–V–W)C highâ€entropy carbide. International Journal of Applied Ceramic Technology, 2023, 20, 224-235.	1.1	11
87	Fracture Toughness of a Silicon Nitride/Silicon Carbide Nanocomposite at 1350°C. Journal of the American Ceramic Society, 1999, 82, 3613-3615.	1.9	10
88	Decomposition of MgSiN2 in nitrogen atmosphere. Journal of the European Ceramic Society, 2011, 31, 1473-1480.	2.8	10
89	Influence of the heat treatment on mechanical properties and oxidation resistance of SiC–Si3N4 composites. Ceramics International, 2013, 39, 7951-7957.	2.3	10
90	Smâ€Doped LaSi ₃ N ₅ : Synthesis, Computed Electronic Structure, and Band Gaps. Journal of the American Ceramic Society, 2014, 97, 2546-2551.	1.9	10

#	Article	IF	CITATIONS
91	Surface characteristics enhancement of MWCNT alumina composites using multi-pass WEDM process. Journal of the European Ceramic Society, 2018, 38, 4035-4042.	2.8	10
92	Design of Lu2O3-reinforced Cf/SiC-ZrB2-ZrC ultra-high temperature ceramic matrix composites: Wetting and interfacial reactivity by ZrSi2 based alloys. Journal of the European Ceramic Society, 2021, 41, 3051-3060.	2.8	10
93	Thermal analysis study of polymer-to-ceramic conversion of organosilicon precursors. Journal of Mining and Metallurgy, Section B: Metallurgy, 2008, 44, 35-38.	0.3	10
94	Pressureless sintering of Si3N4 with Y2O3 and Al2O3 additives—compatibility of powder beds. Ceramics International, 1992, 18, 279-283.	2.3	9
95	Microstructurally induced internal stresses in β-Si3N4 whisker-reinforced Si3N4 ceramics. Journal of the European Ceramic Society, 1997, 17, 1093-1097.	2.8	9
96	Silicon Nitride Based Nano- and Micro-Composites with Enhanced Mechanical Properties. Key Engineering Materials, 1999, 159-160, 405-410.	0.4	9
97	Dynamic fatigue of a Si3N4+SiC nanocomposite at 1350°C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 291, 250-255.	2.6	9
98	Low Cost SiC/Si ₃ N ₄ Nanocomposites. Key Engineering Materials, 2002, 206-213, 1061-1064.	0.4	9
99	Reaction sintering of fluorine-doped MgSiN2. Journal of the European Ceramic Society, 2004, 24, 3367-3375.	2.8	9
100	The influence of ageing on consolidation and sinterability of a sub-micron alumina powder. Powder Technology, 2011, 214, 313-321.	2.1	9
101	Hydrothermal corrosion and flexural strength of Si3N4-based ceramics. Corrosion Science, 2014, 85, 94-100.	3.0	9
102	Nontronites as catalyst for synthesis of carbon nanotubes by catalytic chemical vapor deposition Applied Clay Science, 2015, 114, 170-178.	2.6	9
103	Surface characteristics and erosion phenomena in WEDM of alumina composites. Materials and Manufacturing Processes, 2018, 33, 1815-1821.	2.7	9
104	Micro scale fracture strength of grains and grain boundaries in polycrystalline La-doped β-Si3N4 ceramics. Journal of the European Ceramic Society, 2020, 40, 4783-4791.	2.8	9
105	The Influence of Sintering Additives on the Fracture Behaviour and Wear of Liquid-Phase Sintered Polycrystalline Alumina. Key Engineering Materials, 2002, 223, 227-232.	0.4	8
106	Wear and Creep Characteristics of a Carbon-Derived Si3N4/SiC Micro/Nanocomposite. Materialwissenschaft Und Werkstofftechnik, 2003, 34, 338-342.	0.5	8
107	Influence of Graphite Additives on Wear Properties of Hot Pressed Si3N4 Ceramics. Journal of the Ceramic Society of Japan, 2006, 114, 1061-1068.	1.3	8
108	Layered composites with self-diagnostic ability. Composites Part B: Engineering, 2006, 37, 515-523.	5.9	8

#	Article	IF	CITATIONS
109	Indentation Deformation and Microcracking in βâ€ <scp><scp>Si</scp></scp> ₃ <scp><scp>N</scp></scp> ₄ â€Based Nanoceramic. Journal of the American Ceramic Society, 2012, 95, 1421-1428.	1.9	8
110	Electrically Conductive Silicon Carbide without Oxide Sintering Additives. Journal of the Korean Ceramic Society, 2012, 49, 342-346.	1.1	8
111	Dynamic Fatigue and Fracture Toughness of Si ₃ N ₄ + SiC Nanocomposite at 1350°C. Key Engineering Materials, 2000, 175-176, 311-320.	0.4	7
112	Improvement of electrical conductivity of silicon nitride/carbon nano-fibers composite using magnesium silicon nitride and ytterbium oxide as sintering additives. Journal of the European Ceramic Society, 2013, 33, 2429-2434.	2.8	7
113	Static fatigue resistance of Si3N4 + Si3N4 whisker ceramics at 1200°C. Journal of Materials Science Letters, 1994, 13, 131-134.	0.5	6
114	Low-cycle fatigue strength under step loading of a Si3N4 + SiC nanocomposite at 1350°C. Journal of Materials Science, 2001, 36, 4469-4477.	1.7	6
115	Corrosion and oxidation behaviour of .BETASiAlON ceramics via different processing route. Journal of the Ceramic Society of Japan, 2009, 117, 482-488.	0.5	6
116	The influence of dopants on loss tangent of polycrystalline alumina ceramics. Ceramics International, 2012, 38, 2043-2049.	2.3	6
117	Importance of chemistry in high-tech ceramics design. Pure and Applied Chemistry, 2002, 74, 2137-2144.	0.9	5
118	Si _{3O_{4 and Al_{2O_{3 based ceramic. International Journal of Materials and Product Technology, 2005, 23, 91.}}}}	0.1	5
119	Fractographic Montage for a Si3N4-SiC Nanocomposite. Journal of the American Ceramic Society, 2006, 89, 1752-1755.	1.9	5
120	Preceramic Polymerâ€Derived SiAlON as Sintering Aid for Silicon Nitride. Journal of the American Ceramic Society, 2014, 97, 3407-3412.	1.9	5
121	Corrosion of engineering ceramic materials by molten iron Part II: Alumina. Corrosion Science, 2016, 109, 230-237.	3.0	5
122	Fracture Characteristics of Layered and Nano-Particle Reinforced Si3N4. , 1998, , 187-205.		5
123	α-β phase transformation of silicon nitride — computer simulation. Journal of Materials Science, 1991, 26, 6083-6090.	1.7	4
124	High-temperature strength and fracture toughness of Si3N4-β-Si3N4 composites. Journal of Materials Science Letters, 1991, 10, 776-778.	0.5	4
125	Sub-Grain Boundary Formation in Si ₃ N ₄ Based Ceramics. Key Engineering Materials, 1998, 161-163, 229-234.	0.4	4
126	Local chemistry changes in Si3N4 based ceramics during hot-pressing and subsequent annealing. Journal of the European Ceramic Society, 1999, 19, 2027-2032.	2.8	4

#	Article	IF	CITATIONS
127	Creep Mechanism of SiCN-Derived Nano/Micro Composite. Key Engineering Materials, 2002, 223, 201-208.	0.4	4
128	Influence of * and * SiC Seeds on Microstructural Development and Mechanical Properties of Liquid Phase Sintered SiC with RE ₂ O ₃ and AlN Additives. Solid State Phenomena, 2003, 90-91, 273-278.	0.3	4
129	Mechanical properties of Si3N4/SiC nanocomposites studied by instrumented indentation with spheres. Journal of the European Ceramic Society, 2004, 24, 3345-3350.	2.8	4
130	The Formation of Two Types of SiC Inclusions in Si ₃ N ₄ /SiC Nanocomposites. Key Engineering Materials, 2004, 264-268, 2305-2310.	0.4	4
131	Hardness Limits of SiC and Si ₃ N ₄ Ceramic Materials. Key Engineering Materials, 2005, 287, 311-316.	0.4	4
132	The influence of La2O3 and Nd2O3 addition on aspect ratio of Y-α-sialon seeds. Materials Letters, 2005, 59, 3201-3204.	1.3	4
133	Thermodynamic and Dielectric Properties of MgSiN ₂ Ceramics. Key Engineering Materials, 2006, 317-318, 857-860.	0.4	4
134	Fracture Toughness of Si ₃ N ₄ Based Ceramics with Rare-Earth Oxide Sintering Additives. Key Engineering Materials, 0, 409, 377-381.	0.4	4
135	Nanopowder processing of ultrafine Si ₃ N ₄ with improved wear resistance. Journal of Asian Ceramic Societies, 2015, 3, 6-12.	1.0	4
136	Corrosion of engineering ceramic materials by molten iron part I: Silicon nitride and SiAlON. Corrosion Science, 2016, 107, 76-84.	3.0	4
137	Si3N4 Ceramics, Structure and Properties. , 2021, , 109-118.		4
138	Factors Influencing the Residual Stresses in Layered Silicon Nitride-Based Composites. , 1997, , 301-309.		4
139	Microstructure, hardness, and fracture toughness evolution of hot-pressed SiC/Si3N4 nano/micro composite after high-temperature treatment. International Journal of Materials Research, 2006, 97, 772-777.	0.1	4
140	Influence of open voltage and servo voltage during Wire-EDM of silicon carbides. Procedia CIRP, 2020, 95, 285-289.	1.0	4
141	Ultra-high creep resistant SiC ceramics prepared by rapid hot pressing. Journal of the European Ceramic Society, 2022, 42, 820-829.	2.8	4
142	Composition and Morphology Control of Si-C-N Powders by CVD Method. Key Engineering Materials, 2000, 175-176, 49-56.	0.4	3
143	Gradient Structures in SiAlON´s for Improved Cutting Performance. Key Engineering Materials, 2004, 264-268, 901-904.	0.4	3
144	Mechanical Properties and Microstructure of α-SiAlON Based Cutting Tools. Key Engineering Materials, 2005, 290, 250-253.	0.4	3

#	Article	IF	CITATIONS
145	Preparation and Properties of Layered SiC-Graphene Composites for EDM. Materials, 2021, 14, 2916.	1.3	3
146	Estimation of contribution of non-densifying mechanisms during sintering. Ceramics International, 1988, 14, 63-69.	2.3	2
147	Mechanical Properties of Recently Developed Si ₃ N ₄ -SiC Nanocomposite. Key Engineering Materials, 2002, 223, 233-236.	0.4	2
148	Corrosion of β-SiAlON in Molten Aluminium, Cryolite and NaCl-KCl Mixture. Key Engineering Materials, 0, 403, 133-134.	0.4	2
149	Corrosion of Alumina Ceramics in an Aqueous Solution of Sodium Chloride. Key Engineering Materials, 0, 409, 283-286.	0.4	2
150	Ab initio study of the electronic structure and band gaps of Eu-doped LaSi3N5 phosphors: A role of oxygen atom. Journal of the European Ceramic Society, 2015, 35, 3249-3253.	2.8	2
151	Separation of CNF agglomerates from a ceramic suspension by spray drying technique. Ceramics International, 2016, 42, 15787-15792.	2.3	2
152	Wire electrical discharge machining of MWCNT filled alumina composites. Materials Today: Proceedings, 2018, 5, 5722-5726.	0.9	2
153	Crystallization Induced Sub-Grain Boundaries in Silicon Nitride. , 1997, , 213-228.		2
154	Laser Surface Modification of Wire-Electric Discharge Machined Graphene Nanoparticle Reinforced SiC Composites. Journal of Micro and Nano-Manufacturing, 2020, 8, .	0.8	2
155	Luminescent Properties of Europium-Doped Lanthanum Silicon Nitride Phosphor. Journal of the Korean Ceramic Society, 2012, 49, 325-327.	1.1	2
156	Sintering map for MgO. Journal of Materials Science Letters, 1985, 4, 1533-1535.	0.5	1
157	Effect of Rare Earth Oxide and Rare Earth-Alumina-Silica Glass on Mechanical Properties of Liquid Phase Sintered Alumina Ceramics. Key Engineering Materials, 2005, 290, 246-249.	0.4	1
158	Corrosion Resistance of β-SiAlON-Based Ceramics Against Molten Steel. Materials Science Forum, 2007, 554, 147-150.	0.3	1
159	Mechanism of Generation of Tableware Surface Defects during Dishwashing Process. Advanced Materials Research, 0, 39-40, 323-328.	0.3	1
160	The Influence of Corrosion in an Aqueous Solution of NaCl on Fracture and Strength of Various Structural Ceramics. Key Engineering Materials, 0, 409, 260-266.	0.4	1
161	Strength Degradation Flaws in the Liquid-Phase-Sintered SiC Based Ceramics. Key Engineering Materials, 0, 409, 350-353.	0.4	1
162	Mechanical Properties of Porous Si ₃ N ₄ Ceramics. Key Engineering Materials, 2013, 586, 166-169.	0.4	1

#	Article	IF	CITATIONS
163	Determination of Local Mechanical Properties of Si ₃ N ₄ Based Foams. Key Engineering Materials, 0, 606, 213-216.	0.4	1
164	Influence of the Microstructure on Macro/Micro <i> versus</i> Nanohardness of SiC Ceramics. Key Engineering Materials, 2014, 606, 197-200.	0.4	1
165	Porous silicon nitrideâ€based drug delivery carrier. International Journal of Applied Ceramic Technology, 0, , .	1.1	1
166	Synthesis and microstructure of conformal coatings on particulates. Materials Research Society Symposia Proceedings, 1997, 501, 313.	0.1	0
167	Crystallisation, Thermal Expansion and Density of Si-Al-Y-O Glasses for Ceramics. Key Engineering Materials, 1999, 175-176, 125-130.	0.4	Ο
168	Nano-, Micro-, and Milliboundaries in Silicon Nitride Based Ceramics. , 0, , 246-259.		0
169	Characterisation of Alumina-Based Metal Cutting Tools. Key Engineering Materials, 2002, 206-213, 661-664.	0.4	Ο
170	BN Coated Whisker - Reinforced Silicon Nitride. Key Engineering Materials, 2002, 223, 237-240.	0.4	0
171	Neutron Powder Diffraction Study of Y-Sialon with La2O3 or Nd2O3 Addition. Journal of the American Ceramic Society, 2005, 88, 3542-3544.	1.9	Ο
172	Carbon Nanotubes Prepared by CVD. Key Engineering Materials, 2005, 290, 230-233.	0.4	0
173	Labeled Weibull Plot of a C-Derived Si ₃ N ₄ -SiC Nanocomposite. Key Engineering Materials, 2005, 290, 292-295.	0.4	Ο
174	Nano-Indentation of SiC and Si ₃ N ₄ /SiC Ceramic Materials. Key Engineering Materials, 2005, 290, 272-275.	0.4	0
175	In memoriam Associate Professor Ing. VladimÃr DanÄ›k, DrSc. Chemical Papers, 2006, 60, .	1.0	Ο
176	Low Cost Si ₃ N ₄ /SiC Nanocomposites, Processing, RT and HT Properties. Key Engineering Materials, 2006, 317-318, 185-190.	0.4	0
177	Role of α-SiAlON Nuclei Addition on the Rod-Like Y-Sm α-SiAlON Formation. Materials Science Forum, 2007, 554, 101-106.	0.3	Ο
178	Bending and Contact Strength of a Si ₃ N ₄ +SiC Micro/Nano Composite. Materials Science Forum, 2008, 567-568, 177-180.	0.3	0
179	Analysis of Tableware Mouth Impact Strength. Advanced Materials Research, 2008, 39-40, 587-590.	0.3	0
180	Microstructure and Mechanical Properties of Rare-Earth Doped Si3N4/SiC Nanocomposites. , 2009, , .		0

#	Article	IF	CITATIONS
181	Influence of Calcium Addition on the Chemical Durability of the Model Alumino-Silicate Glasses in Aqueous Solutions. Key Engineering Materials, 0, 512-515, 1009-1014.	0.4	0
182	Hydrothermal Corrosion of Alumina Ceramics under Static and Quasi-Dynamic Conditions. Key Engineering Materials, 0, 512-515, 513-518.	0.4	0
183	Local Mechanical Properties of Highly Porous Si ₃ N ₄ for Trabecular Bone Replacement. Key Engineering Materials, 0, 662, 142-146.	0.4	0
184	Scratch Resistance of the Si ₃ N ₄ -Graphene Nanoplatelets Composites. Key Engineering Materials, 2015, 662, 165-168.	0.4	0
185	Bioceramic microspheres based on Si ₃ N ₄ –Ca ₃ (PO ₄) ₂ . Resolution and Discovery, 2019, 4, 16-20.	0.9	0
186	Indentation Fatigue of Some Si3N4 Based Ceramics. , 1997, , 399-407.		0
187	HYDROTHERMAL CORROSION RESISTANCE OF SILICON NITRIDE WITH O'-Si Al ON GRAIN BOUNDARY PHASE. Ceramics - Silikaty, 2018, , 382-388.	0.2	0
188	Investigation of Machining Capabilities of 2.5 vol. % MWCNT Al2O3 Composites in µ-EDM. Lecture Notes in Mechanical Engineering, 2020, , 459-465.	0.3	0
189	Microstructure, hardness, and fracture toughness evolution of hot-pressed SiC/Si ₃ N ₄ nano/micro composite after high-temperature treatment. International Journal of Materials Research, 2022, 97, 772-777.	0.1	Ο