
Himisha Beltran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8740927/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrative Clinical Genomics of Advanced Prostate Cancer. Cell, 2015, 161, 1215-1228.	13.5	2,660
2	Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nature Biotechnology, 2013, 31, 1023-1031.	9.4	1,785
3	Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. New England Journal of Medicine, 2016, 375, 443-453.	13.9	1,205
4	Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nature Medicine, 2016, 22, 298-305.	15.2	1,193
5	Organoid Cultures Derived from Patients with Advanced Prostate Cancer. Cell, 2014, 159, 176-187.	13.5	1,184
6	Punctuated Evolution of Prostate Cancer Genomes. Cell, 2013, 153, 666-677.	13.5	1,107
7	Genomic correlates of clinical outcome in advanced prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11428-11436.	3.3	839
8	<i>SOX2</i> promotes lineage plasticity and antiandrogen resistance in <i>TP53</i> - and <i>RB1</i> -deficient prostate cancer. Science, 2017, 355, 84-88.	6.0	759
9	Personalized <i>In Vitro</i> and <i>In Vivo</i> Cancer Models to Guide Precision Medicine. Cancer Discovery, 2017, 7, 462-477.	7.7	735
10	Molecular Characterization of Neuroendocrine Prostate Cancer and Identification of New Drug Targets. Cancer Discovery, 2011, 1, 487-495.	7.7	725
11	The long tail of oncogenic drivers in prostate cancer. Nature Genetics, 2018, 50, 645-651.	9.4	601
12	The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nature Communications, 2014, 5, 5383.	5.8	522
13	Management of Patients with Advanced Prostate Cancer: The Report of the Advanced Prostate Cancer Consensus Conference APCCC 2017. European Urology, 2018, 73, 178-211.	0.9	488
14	Clinical and Genomic Characterization of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer: A Multi-institutional Prospective Study. Journal of Clinical Oncology, 2018, 36, 2492-2503.	0.8	477
15	Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature, 2018, 560, 499-503.	13.7	477
16	Proposed Morphologic Classification of Prostate Cancer With Neuroendocrine Differentiation. American Journal of Surgical Pathology, 2014, 38, 756-767.	2.1	439
17	N-Myc Induces an EZH2-Mediated Transcriptional Program Driving Neuroendocrine Prostate Cancer. Cancer Cell, 2016, 30, 563-577.	7.7	394
18	Targeted Next-generation Sequencing of Advanced Prostate Cancer Identifies Potential Therapeutic Targets and Disease Heterogeneity. European Urology, 2013, 63, 920-926.	0.9	379

#	Article	IF	CITATIONS
19	Aggressive Variants of Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2014, 20, 2846-2850.	3.2	339
20	High Fidelity Patient-Derived Xenografts for Accelerating Prostate Cancer Discovery and Drug Development. Cancer Research, 2014, 74, 1272-1283.	0.4	304
21	The Master Neural Transcription Factor BRN2 Is an Androgen Receptor–Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer. Cancer Discovery, 2017, 7, 54-71.	7.7	285
22	Management of Patients with Advanced Prostate Cancer: Report of the Advanced Prostate Cancer Consensus Conference 2019. European Urology, 2020, 77, 508-547.	0.9	278
23	Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nature Reviews Urology, 2018, 15, 271-286.	1.9	273
24	Whole-Exome Sequencing of Metastatic Cancer and Biomarkers of Treatment Response. JAMA Oncology, 2015, 1, 466.	3.4	264
25	Clonal evolution of chemotherapy-resistant urothelial carcinoma. Nature Genetics, 2016, 48, 1490-1499.	9.4	250
26	Patient derived organoids to model rare prostate cancer phenotypes. Nature Communications, 2018, 9, 2404.	5.8	246
27	Prostate cancer. Lancet, The, 2021, 398, 1075-1090.	6.3	240
28	The Placental Gene PEG10 Promotes Progression of Neuroendocrine Prostate Cancer. Cell Reports, 2015, 12, 922-936.	2.9	216
29	Concurrent AURKA and MYCN Gene Amplifications Are Harbingers of Lethal TreatmentRelated Neuroendocrine Prostate Cancer. Neoplasia, 2013, 15, 1-IN4.	2.3	205
30	The Role of Lineage Plasticity in Prostate Cancer Therapy Resistance. Clinical Cancer Research, 2019, 25, 6916-6924.	3.2	200
31	Clinical features of neuroendocrine prostate cancer. European Journal of Cancer, 2019, 121, 7-18.	1.3	195
32	The Many Faces of Neuroendocrine Differentiation in Prostate Cancer Progression. Frontiers in Oncology, 2014, 4, 60.	1.3	194
33	Biology and evolution of poorly differentiated neuroendocrine tumors. Nature Medicine, 2017, 23, 664-673.	15.2	192
34	Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nature Biotechnology, 2017, 35, 577-582.	9.4	188
35	Challenges in Recognizing Treatment-Related Neuroendocrine Prostate Cancer. Journal of Clinical Oncology, 2012, 30, e386-e389.	0.8	185
36	A Phase II Trial of the Aurora Kinase A Inhibitor Alisertib for Patients with Castration-resistant and Neuroendocrine Prostate Cancer: Efficacy and Biomarkers. Clinical Cancer Research, 2019, 25, 43-51.	3.2	177

#	Article	IF	CITATIONS
37	Implementation of Germline Testing for Prostate Cancer: Philadelphia Prostate Cancer Consensus Conference 2019. Journal of Clinical Oncology, 2020, 38, 2798-2811.	0.8	170
38	From sequence to molecular pathology, and a mechanism driving the neuroendocrine phenotype in prostate cancer. Journal of Pathology, 2012, 227, 286-297.	2.1	161
39	Towards precision oncology in advanced prostate cancer. Nature Reviews Urology, 2019, 16, 645-654.	1.9	156
40	Immunogenomic analyses associate immunological alterations with mismatch repair defects in prostate cancer. Journal of Clinical Investigation, 2018, 128, 4441-4453.	3.9	155
41	Epigenetic Repression of miR-31 Disrupts Androgen Receptor Homeostasis and Contributes to Prostate Cancer Progression. Cancer Research, 2013, 73, 1232-1244.	0.4	150
42	Emerging Variants of Castration-Resistant Prostate Cancer. Current Oncology Reports, 2017, 19, 32.	1.8	150
43	ONECUT2 is a driver of neuroendocrine prostate cancer. Nature Communications, 2019, 10, 278.	5.8	143
44	Molecular Biomarkers in Localized Prostate Cancer: ASCO Guideline. Journal of Clinical Oncology, 2020, 38, 1474-1494.	0.8	141
45	Upper tract urothelial carcinoma has a luminal-papillary T-cell depleted contexture and activated FGFR3 signaling. Nature Communications, 2019, 10, 2977.	5.8	140
46	SRRM4 Drives Neuroendocrine Transdifferentiation of Prostate Adenocarcinoma Under Androgen Receptor Pathway Inhibition. European Urology, 2017, 71, 68-78.	0.9	136
47	New Therapies for Castration-Resistant Prostate Cancer: Efficacy and Safety. European Urology, 2011, 60, 279-290.	0.9	130
48	Increased Serine and One-Carbon Pathway Metabolism by PKCλ/ι Deficiency Promotes Neuroendocrine Prostate Cancer. Cancer Cell, 2019, 35, 385-400.e9.	7.7	128
49	Circulating tumor DNA profile recognizes transformation to castration-resistant neuroendocrine prostate cancer. Journal of Clinical Investigation, 2020, 130, 1653-1668.	3.9	122
50	Anti–prostateâ€6pecific membrane antigenâ€based radioimmunotherapy for prostate cancer. Cancer, 2010, 116, 1075-1083.	2.0	120
51	The Initial Detection and Partial Characterization of Circulating Tumor Cells in Neuroendocrine Prostate Cancer. Clinical Cancer Research, 2016, 22, 1510-1519.	3.2	117
52	The N-myc Oncogene: Maximizing its Targets, Regulation, and Therapeutic Potential. Molecular Cancer Research, 2014, 12, 815-822.	1.5	116
53	N-Myc–mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer. Journal of Clinical Investigation, 2019, 129, 3924-3940.	3.9	115
54	Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer. Science Translational Medicine, 2019, 11, .	5.8	105

#	Article	IF	CITATIONS
55	Phase 1/2 study of fractionated dose lutetiumâ€177–labeled anti–prostateâ€specific membrane antigen monoclonal antibody J591 (¹⁷⁷ Luâ€J591) for metastatic castrationâ€resistant prostate cancer. Cancer, 2019, 125, 2561-2569.	2.0	100
56	Clinical Outcome of Prostate Cancer Patients with Germline DNA Repair Mutations: Retrospective Analysis from an International Study. European Urology, 2018, 73, 687-693.	0.9	99
57	Clinical and Biological Features of Neuroendocrine Prostate Cancer. Current Oncology Reports, 2021, 23, 15.	1.8	99
58	ERG induces taxane resistance in castration-resistant prostate cancer. Nature Communications, 2014, 5, 5548.	5.8	96
59	Linking prostate cancer cell AR heterogeneity to distinct castration and enzalutamide responses. Nature Communications, 2018, 9, 3600.	5.8	96
60	Transcriptional mediators of treatment resistance in lethal prostate cancer. Nature Medicine, 2021, 27, 426-433.	15.2	90
61	Unraveling the clonal hierarchy of somatic genomic aberrations. Genome Biology, 2014, 15, 439.	3.8	80
62	Neuroendocrine Differentiation in Prostate Cancer: Emerging Biology, Models, and Therapies. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a030593.	2.9	76
63	Role of specialized composition of SWI/SNF complexes in prostate cancer lineage plasticity. Nature Communications, 2020, 11, 5549.	5.8	76
64	Chromatin profiles classify castration-resistant prostate cancers suggesting therapeutic targets. Science, 2022, 376, .	6.0	75
65	An androgen receptor switch underlies lineage infidelity in treatment-resistant prostate cancer. Nature Cell Biology, 2021, 23, 1023-1034.	4.6	72
66	Biological Evolution of Castration-resistant Prostate Cancer. European Urology Focus, 2019, 5, 147-154.	1.6	71
67	CHD1 Loss Alters AR Binding at Lineage-Specific Enhancers and Modulates Distinct Transcriptional Programs to Drive Prostate Tumorigenesis. Cancer Cell, 2019, 35, 603-617.e8.	7.7	70
68	Activity of Platinum-Based Chemotherapy in Patients With Advanced Prostate Cancer With and Without DNA Repair Gene Aberrations. JAMA Network Open, 2020, 3, e2021692.	2.8	70
69	Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer. Nature Communications, 2021, 12, 1979.	5.8	70
70	Epigenomic Alterations in Localized and Advanced Prostate Cancer. Neoplasia, 2013, 15, 373-IN5.	2.3	69
71	Impact of Therapy on Genomics and Transcriptomics in High-Risk Prostate Cancer Treated with Neoadjuvant Docetaxel and Androgen Deprivation Therapy. Clinical Cancer Research, 2017, 23, 6802-6811.	3.2	69
72	Development and validation of a whole-exome sequencing test for simultaneous detection of point mutations, indels and copy-number alterations for precision cancer care. Npj Genomic Medicine, 2016, 1, .	1.7	68

#	Article	IF	CITATIONS
73	Aberrant Activation of a Gastrointestinal Transcriptional Circuit in Prostate Cancer Mediates Castration Resistance. Cancer Cell, 2017, 32, 792-806.e7.	7.7	61
74	Cancer and Leukemia Group B 90203 (Alliance): Radical Prostatectomy With or Without Neoadjuvant Chemohormonal Therapy in Localized, High-Risk Prostate Cancer. Journal of Clinical Oncology, 2020, 38, 3042-3050.	0.8	60
75	Subtype heterogeneity and epigenetic convergence in neuroendocrine prostate cancer. Nature Communications, 2021, 12, 5775.	5.8	59
76	Androgen deprivation upregulates SPINK1 expression and potentiates cellular plasticity in prostate cancer. Nature Communications, 2020, 11, 384.	5.8	56
77	The long noncoding RNA landscape of neuroendocrine prostate cancer and its clinical implications. GigaScience, 2018, 7, .	3.3	54
78	Organotypic tumor slice cultures provide a versatile platform for immuno-oncology and drug discovery. Oncolmmunology, 2019, 8, e1670019.	2.1	51
79	The long noncoding RNA H19 regulates tumor plasticity in neuroendocrine prostate cancer. Nature Communications, 2021, 12, 7349.	5.8	51
80	Management of Patients with Advanced Prostate Cancer: Report from the Advanced Prostate Cancer Consensus Conference 2021. European Urology, 2022, 82, 115-141.	0.9	51
81	New Strategies in Prostate Cancer: Translating Genomics into the Clinic. Clinical Cancer Research, 2013, 19, 517-523.	3.2	50
82	PARP Inhibition Suppresses GR–MYCN–CDK5–RB1–E2F1 Signaling and Neuroendocrine Differentiation in Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2019, 25, 6839-6851.	3.2	50
83	The treatment landscape of metastatic prostate cancer. Cancer Letters, 2021, 519, 20-29.	3.2	50
84	Identification of functionally active, low frequency copy number variants at 15q21.3 and 12q21.31 associated with prostate cancer risk. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6686-6691.	3.3	49
85	The Spectrum of Neuroendocrine Tumors: Histologic Classification, Unique Features and Areas of Overlap. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2015, , 92-103.	1.8	48
86	Cross Modulation between the Androgen Receptor Axis and Protocadherin-PC in Mediating Neuroendocrine Transdifferentiation and Therapeutic Resistance of Prostate Cancer. Neoplasia, 2013, 15, 761-IN22.	2.3	47
87	Accelerating precision medicine in metastatic prostate cancer. Nature Cancer, 2020, 1, 1041-1053.	5.7	45
88	Temporal evolution of cellular heterogeneity during the progression to advanced AR-negative prostate cancer. Nature Communications, 2021, 12, 3372.	5.8	45
89	SLFN11 Expression in Advanced Prostate Cancer and Response to Platinum-based Chemotherapy. Molecular Cancer Therapeutics, 2020, 19, 1157-1164.	1.9	44
90	Bone biopsy protocol for advanced prostate cancer in the era of precision medicine. Cancer, 2018, 124, 1008-1015.	2.0	42

#	Article	IF	CITATIONS
91	Ultrasensitive detection of cancer biomarkers by nickel-based isolation of polydisperse extracellular vesicles from blood. EBioMedicine, 2019, 43, 114-126.	2.7	40
92	Next Generation Sequencing of Prostate Cancer from a Patient Identifies a Deficiency of Methylthioadenosine Phosphorylase, an Exploitable Tumor Target. Molecular Cancer Therapeutics, 2012, 11, 775-783.	1.9	34
93	BET Bromodomain Inhibition Blocks an AR-Repressed, E2F1-Activated Treatment-Emergent Neuroendocrine Prostate Cancer Lineage Plasticity Program. Clinical Cancer Research, 2021, 27, 4923-4936.	3.2	33
94	Therapy considerations in neuroendocrine prostate cancer: what next?. Endocrine-Related Cancer, 2021, 28, T67-T78.	1.6	33
95	Biallelic tumour suppressor loss and DNA repair defects in <i>de novo</i> smallâ€cell prostate carcinoma. Journal of Pathology, 2018, 246, 244-253.	2.1	32
96	Small extracellular vesicles modulated by αVβ3Âintegrin induce neuroendocrine differentiation in recipient cancer cells. Journal of Extracellular Vesicles, 2020, 9, 1761072.	5.5	32
97	Alliance A031201: A phase III trial of enzalutamide (ENZ) versus enzalutamide, abiraterone, and prednisone (ENZ/AAP) for metastatic castration resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2019, 37, 5008-5008.	0.8	31
98	Next-Generation Rapid Autopsies Enable Tumor Evolution Tracking and Generation of Preclinical Models. JCO Precision Oncology, 2017, 2017, 1-13.	1.5	30
99	Clinical considerations for the management of androgen indifferent prostate cancer. Prostate Cancer and Prostatic Diseases, 2021, 24, 623-637.	2.0	30
100	Detecting Neuroendocrine Prostate Cancer Through Tissue-Informed Cell-Free DNA Methylation Analysis. Clinical Cancer Research, 2022, 28, 928-938.	3.2	29
101	Prostate cancer with Paneth cell–like neuroendocrine differentiation has recognizable histomorphology and harbors AURKA gene amplification. Human Pathology, 2014, 45, 2136-2143.	1.1	28
102	CD38 is methylated in prostate cancer and regulates extracellular NAD+. Cancer & Metabolism, 2018, 6, 13.	2.4	28
103	Epigenetics in prostate cancer: clinical implications. Translational Andrology and Urology, 2021, 10, 3104-3116.	0.6	28
104	A phase I/II study of rovalpituzumab tesirine in delta-like 3—expressing advanced solid tumors. Npj Precision Oncology, 2021, 5, 74.	2.3	27
105	A germline FANCA alteration that is associated with increased sensitivity to DNA damaging agents. Journal of Physical Education and Sports Management, 2017, 3, a001487.	0.5	25
106	Circulating tumor cell heterogeneity in neuroendocrine prostate cancer by single cell copy number analysis. Npj Precision Oncology, 2021, 5, 76.	2.3	25
107	Integrative Molecular Analysis of Patients With Advanced and Metastatic Cancer. JCO Precision Oncology, 2019, 3, 1-12.	1.5	24
108	Activated ALK Cooperates with N-Myc via Wnt/β-Catenin Signaling to Induce Neuroendocrine Prostate Cancer. Cancer Research, 2021, 81, 2157-2170.	0.4	24

#	Article	IF	CITATIONS
109	Extracellular Matrix in Synthetic Hydrogelâ€Based Prostate Cancer Organoids Regulate Therapeutic Response to EZH2 and DRD2 Inhibitors. Advanced Materials, 2022, 34, e2100096.	11.1	24
110	An emerging role for cytopathology in precision oncology. Cancer Cytopathology, 2016, 124, 167-173.	1.4	23
111	Plasma androgen receptor and serum chromogranin A in advanced prostate cancer. Scientific Reports, 2018, 8, 15442.	1.6	21
112	Cancer-Specific Thresholds Adjust for Whole Exome Sequencing–Based Tumor Mutational Burden Distribution. JCO Precision Oncology, 2019, 3, 1-12.	1.5	21
113	Common germline-somatic variant interactions in advanced urothelial cancer. Nature Communications, 2020, 11, 6195.	5.8	21
114	CD38 in Advanced Prostate Cancers. European Urology, 2021, 79, 736-746.	0.9	21
115	Value of serum neuroendocrine markers in evaluation of neuroendocrine prostate cancer: A validation study using metastatic biopsies Journal of Clinical Oncology, 2019, 37, 278-278.	0.8	21
116	Targeting the epichaperome as an effective precision medicine approach in a novel PML-SYK fusion acute myeloid leukemia. Npj Precision Oncology, 2021, 5, 44.	2.3	20
117	Phase I dose-escalation study of ²²⁵ Ac-J591 for progressive metastatic castration resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2018, 36, TPS399-TPS399.	0.8	20
118	CRIPTO overexpression promotes mesenchymal differentiation in prostate carcinoma cells through parallel regulation of AKT and FGFR activities. Oncotarget, 2015, 6, 11994-12008.	0.8	20
119	Emerging Molecular Biomarkers in Advanced Prostate Cancer: Translation to the Clinic. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2016, 35, 131-141.	1.8	19
120	Intrapatient heterogeneity in prostate cancer. Nature Reviews Urology, 2015, 12, 430-431.	1.9	18
121	PIM protein kinases regulate the level of the long noncoding RNA H19 to control stem cell gene transcription and modulate tumor growth. Molecular Oncology, 2020, 14, 974-990.	2.1	18
122	Taxane-induced Attenuation of the CXCR2/BCL-2 Axis Sensitizes Prostate Cancer to Platinum-based Treatment. European Urology, 2021, 79, 722-733.	0.9	17
123	Clinical and genomic characterization of metastatic small cell/neuroendocrine prostate cancer (SCNC) and intermediate atypical prostate cancer (IAC): Results from the SU2C/PCF/AACRWest Coast Prostate Cancer Dream Team (WCDT) Journal of Clinical Oncology, 2016, 34, 5019-5019.	0.8	16
124	Emerging Molecular Biomarkers in Advanced Prostate Cancer: Translation to the Clinic. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2016, 36, 131-141.	1.8	16
125	Opposing transcriptional programs of KLF5 and AR emerge during therapy for advanced prostate cancer. Nature Communications, 2021, 12, 6377.	5.8	16
126	Proteomic and genomic signatures of repeat instability in cancer and adjacent normal tissues. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16987-16996.	3.3	14

#	Article	IF	CITATIONS
127	Transcriptomic and Clinical Characterization of Neuropeptide Y Expression in Localized and Metastatic Prostate Cancer: Identification of Novel Prostate Cancer Subtype with Clinical Implications. European Urology Oncology, 2019, 2, 405-412.	2.6	14
128	Identification of alternative protein targets of glutamate-ureido-lysine associated with PSMA tracer uptake in prostate cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13
129	Comparative genomics of primary prostate cancer and paired metastases: insights from 12 molecular case studies. Journal of Pathology, 2022, 257, 274-284.	2.1	13
130	Whole exome sequencing (WES) of circulating tumor DNA (ctDNA) in patients with neuroendocrine prostate cancer (NEPC) informs tumor heterogeneity Journal of Clinical Oncology, 2017, 35, 5011-5011.	0.8	12
131	DNA Mismatch Repair in Prostate Cancer. Journal of Clinical Oncology, 2013, 31, 1782-1784.	0.8	11
132	Prostate Cancer Foundation Hormone-Sensitive Prostate Cancer Biomarker Working Group Meeting Summary. Urology, 2021, 155, 165-171.	0.5	11
133	Integration of whole-exome and anchored PCR-based next generation sequencing significantly increases detection of actionable alterations in precision oncology. Translational Oncology, 2021, 14, 100944.	1.7	10
134	Primary Squamous Cell Carcinoma of the Urinary Bladder Presenting as Peritoneal Carcinomatosis. Advances in Urology, 2010, 2010, 1-3.	0.6	9
135	Personalizing Therapy for Metastatic Prostate Cancer: The Role of Solid and Liquid Tumor Biopsies. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 358-369.	1.8	9
136	CALGB 90203 (Alliance): Radical prostatectomy (RP) with or without neoadjuvant chemohormonal therapy (CHT) in men with clinically localized, high-risk prostate cancer (CLHRPC) Journal of Clinical Oncology, 2019, 37, 5079-5079.	0.8	9
137	On-site Cytology for Development of Patient-Derived Three-dimensional Organoid Cultures – A Pilot Study. Anticancer Research, 2017, 37, 1569-1573.	0.5	9
138	Outcomes of preoperative chemotherapy in bladder cancer patients including node-positive disease Journal of Clinical Oncology, 2015, 33, 370-370.	0.8	9
139	Low Tristetraprolin Expression Is Associated with Lethal Prostate Cancer. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 584-590.	1.1	8
140	Genomic and clinical characterization of stromal infiltration markers in prostate cancer. Cancer, 2020, 126, 1407-1412.	2.0	8
141	Clinical and molecular analysis of patients treated with prostate-specific membrane antigen (PSMA)-targeted radionuclide therapy Journal of Clinical Oncology, 2019, 37, 272-272.	0.8	8
142	Personalizing Therapy for Metastatic Prostate Cancer: The Role of Solid and Liquid Tumor Biopsies. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 358-369.	1.8	8
143	Phase I trial of docetaxel/prednisone plus fractionated dose radiolabeled anti-prostate-specific membrane antigen (PSMA) monoclonal antibody ¹⁷⁷ lu-J591 in patients with metastatic, castration-resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2014, 32, 5064-5064.	0.8	7
144	Identification of a therapeutic target using molecular sequencing for treatment of recurrent uterine serous adenocarcinoma. Gynecologic Oncology Reports, 2019, 28, 54-57.	0.3	6

#	Article	IF	CITATIONS
145	Final results of 2-dose fractionation of ¹⁷⁷ Lu-J591 for progressive metastatic castration-resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2016, 34, 5022-5022.	0.8	6
146	Rapid autopsy of a patient with recurrent anaplastic ependymoma. Palliative and Supportive Care, 2018, 16, 238-242.	0.6	5
147	Retinoblastoma Loss in Cancer: Casting a Wider Net. Clinical Cancer Research, 2019, 25, 4199-4201.	3.2	5
148	A phase II trial of the aurora kinase A inhibitor MLN8237 in patients with metastatic castrate resistant and neuroendocrine prostate cancer Journal of Clinical Oncology, 2013, 31, TPS5096-TPS5096.	0.8	5
149	Rovalpituzumab tesirine (Rova-T) as a therapeutic agent for Neuroendocrine Prostate Cancer (NEPC) Journal of Clinical Oncology, 2017, 35, 5029-5029.	0.8	5
150	The genomic landscape of metastatic clear cell renal cell carcinoma after systemic therapy. Molecular Oncology, 2022, 16, 2384-2395.	2.1	5
151	Improved outcomes and precision medicine come within reach. Nature Reviews Urology, 2017, 14, 71-72.	1.9	4
152	BRCA2-Associated Prostate Cancer in a Patient With Spinal and Bulbar Muscular Atrophy. JCO Precision Oncology, 2018, 2, 1-10.	1.5	4
153	Docetaxel for Early Prostate Cancer: What Have We Learned?. European Urology, 2020, 77, 573-575.	0.9	4
154	Phenotypic characterization of circulating tumor cells (CTCs) from neuroendocrine prostate cancer (NEPC) and metastatic castration-resistant prostate cancer (mCRPC) patients to identify a novel diagnostic algorithm for the presence of NEPC Journal of Clinical Oncology, 2015, 33, 197-197.	0.8	4
155	Epigenetics in prostate cancer: clinical implications. Translational Andrology and Urology, 2021, 10, 3104-3116.	0.6	4
156	Tribbles 2 pseudokinase confers enzalutamide resistance in prostate cancer by promoting lineage plasticity. Journal of Biological Chemistry, 2022, 298, 101556.	1.6	4
157	What Experts Think About Prostate Cancer Management During the COVID-19 Pandemic: Report from the Advanced Prostate Cancer Consensus Conference 2021. European Urology, 2022, 82, 6-11.	0.9	4
158	Exceptional Response to Pembrolizumab in a Patient With Castration-Resistant Prostate Cancer With Pancytopenia From Myelophthisis. Journal of Oncology Practice, 2019, 15, 343-345.	2.5	3
159	Germline BRCA2 mutation in a case of aggressive prostate cancer accompanied by spinal bulbar muscular atrophy. Asian Journal of Andrology, 2022, 24, 116.	0.8	3
160	Androgen receptor variant shows heterogeneous expression in prostate cancer according to differentiation stage. Communications Biology, 2021, 4, 785.	2.0	3
161	Prospective analysis of prostate cancer (PC) circulating tumor cells (CTCs) to predict response to docetaxel (DOC) chemotherapy Journal of Clinical Oncology, 2012, 30, 100-100.	0.8	3
162	Association of CTCAE v4 grading of hypertension with toxicity in patients with renal cancer receiving vascular endothelial growth factor (VEGF)-targeting agents Journal of Clinical Oncology, 2013, 31, 447-447.	0.8	3

#	Article	IF	CITATIONS
163	Defining a molecular subclass of treatment resistant prostate cancer Journal of Clinical Oncology, 2015, 33, 5004-5004.	0.8	3
164	Generating a neoantigen map of advanced urothelial carcinoma by whole exome sequencing Journal of Clinical Oncology, 2016, 34, 354-354.	0.8	3
165	Genomic predictors of benefit of docetaxel (D) and next-generation hormonal therapy (NHT) in metastatic castration resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2019, 37, 5018-5018.	0.8	3
166	First-in-field small molecule inhibitors targeting BRN2 as a therapeutic strategy for small cell prostate cancer Journal of Clinical Oncology, 2019, 37, 260-260.	0.8	3
167	Abiraterone plus prednisone improves survival in metastatic castration-resistant prostate cancer. Asian Journal of Andrology, 2011, 13, 785-786.	0.8	3
168	Combined Longitudinal Clinical and Autopsy Phenomic Assessment in Lethal Metastatic Prostate Cancer: Recommendations for Advancing Precision Medicine. European Urology Open Science, 2021, 30, 47-62.	0.2	2
169	Novel genomic signature predictive of response to immune checkpoint blockade: A pan-cancer analysis from project Genomics Evidence Neo-plasia Information Exchange (GENIE). Cancer Genetics, 2021, 258-259, 61-68.	0.2	2
170	Fractionated dose radiolabeled antiprostate specific membrane antigen (PSMA) radioimmunotherapy (177Lu-J591) with or without docetaxel for metastatic castration-resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2015, 33, 194-194.	0.8	2
171	Inherited mutations in DNA repair genes in men with metastatic castration-resistant prostate cancer Journal of Clinical Oncology, 2016, 34, 5009-5009.	0.8	2
172	CATCH-KB: Establishing a Pharmacogenomics Variant Repository for Chemotherapy-Induced Cardiotoxicity. AMIA Summits on Translational Science Proceedings, 2018, 2017, 168-177.	0.4	2
173	Future directions for precision oncology in prostate cancer. Prostate, 2022, 82, .	1.2	2
174	Phase II trial of 177lutetium radiolabeled anti-PSMA antibody J591 (177Lu-J591) for metastatic castrate-resistant prostate cancer (metCRPC): Survival update and expansion cohort with biomarkers Journal of Clinical Oncology, 2013, 31, 121-121.	0.8	1
175	Whole exome sequencing to reveal chemotherapy-driven evolution of platinum-resistant metastatic urothelial cancer Journal of Clinical Oncology, 2015, 33, 4513-4513.	0.8	1
176	Neutrophil-to-lymphocyte ratio as a prognostic biomarker for overall survival in men with advanced prostate cancer treated with platinum chemotherapy Journal of Clinical Oncology, 2019, 37, 266-266.	0.8	1
177	Effect of CTCAE v4 grading of hypertension on reported toxicity in advanced cancer patients receiving vascular endothelial growth factor (VEGF)-targeting agents Journal of Clinical Oncology, 2013, 31, e15600-e15600.	0.8	1
178	Exploring the role of anti-angiogenic therapies in prostate cancer: results from the phase 3 trial of sunitinib. Asian Journal of Andrology, 2014, 16, 568.	0.8	1
179	Precision medicine program for whole-exome sequencing (WES) provides new insight on platinum sensitivity in advanced prostate cancer (PCa) Journal of Clinical Oncology, 2015, 33, 158-158.	0.8	1
180	EZH2 drives and defines an epigenetic subclass of lung cancer. Science Translational Medicine, 2016, 8,	5.8	1

#	Article	IF	CITATIONS
181	Association of loss of tumor suppressor ZFP36 with lethal prostate cancer Journal of Clinical Oncology, 2017, 35, 5062-5062.	0.8	1
182	Targeting the Epichaperome As an Effective Precision Medicine Approach in a Novel PML-SYK Fusion Acute Myeloid Leukemia. Blood, 2018, 132, 1435-1435.	0.6	1
183	Phase I/II dose-escalation trial of fractionated dose 177Lu-J591 plus 177Lu-PSMA-617 for metastatic castration-resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2019, 37, TPS339-TPS339.	0.8	1
184	Leveraging Real World Genomic Data to Advance Prostate Cancer Precision Oncology. European Urology, 2022, 81, 48-49.	0.9	1
185	Isn't Androgen Deprivation Enough? Optimal Treatment for Newly Diagnosed Metastatic Prostate Cancer. Journal of Clinical Oncology, 2022, , JCO2102530.	0.8	1
186	The Balancing Act: Assessing Treatment Burden Versus Treatment Benefit with Evolving Metastatic Hormone-sensitive Prostate Cancer Data. European Urology, 2019, 76, 729-731.	0.9	0
187	The application of precision medicine in diagnosing familial Mediterranean fever. Leukemia and Lymphoma, 2019, 60, 2091-2093.	0.6	0
188	Neuroendocrine prostate cancer (NEPC) after androgen deprivation therapy (ADT): Clinical characteristics Journal of Clinical Oncology, 2012, 30, 190-190.	0.8	0
189	Association of concurrent AURKA and MYCN amplification in primary prostate adenocarcinoma with the development of lethal neuroendocrine prostate cancer (NEPC) Journal of Clinical Oncology, 2012, 30, 120-120.	0.8	0
190	Identifying cancer mutations in neuroendocrine prostate cancer (NEPC) through massively parallel DNA sequencing of formalin-fixed paraffin-embedded (FFPE) tissue Journal of Clinical Oncology, 2012, 30, 110-110.	0.8	0
191	Targeted next-generation sequencing (NGS) of advanced prostate cancer (PCA) using formalin-fixed tissue Journal of Clinical Oncology, 2012, 30, 4649-4649.	0.8	0
192	Clonal heterogeneity in platinum-resistant metastatic urothelial cancer Journal of Clinical Oncology, 2015, 33, 290-290.	0.8	0
193	Effect of prostate-specific membrane antigen (PSMA) radioimmunotherapy on circulating tumor cell (CTC) count Journal of Clinical Oncology, 2015, 33, 199-199.	0.8	0
194	Abstract PR08: The N-Myc transcriptional program driving the neuroendocrine prostate cancer phenotype. , 2015, , .		0
195	Integrated whole exome and RNA sequencing to reveal distinct genomic and transcriptomic landscape of upper tract urothelial carcinoma Journal of Clinical Oncology, 2016, 34, 379-379.	0.8	0
196	Fractionated dose radiolabeled antiâ^'prostate specific membrane antigen (PSMA) radioimmunotherapy (177Luâ^'J591) for progressive metastatic castrationâ^'resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2016, 34, 205-205.	0.8	0
197	Prognostic impact of clinical and pathologic criteria in neuroendocrine and aggressive variant prostate cancer Journal of Clinical Oncology, 2016, 34, 268-268.	0.8	0
198	Impact of therapy on gene expression in high-risk prostate cancer (PCA) treated with neoadjuvant docetaxel and androgen deprivation therapy Journal of Clinical Oncology, 2016, 34, 8-8.	0.8	0

#	Article	IF	CITATIONS
199	Cancer metastases: Are one and all the same?. Science Translational Medicine, 2016, 8, .	5.8	Ο
200	Confronting the challenges of precision oncology. Science Translational Medicine, 2016, 8, .	5.8	0
201	Networking and matchmaking in prostate cancer. Science Translational Medicine, 2016, 8, .	5.8	0
202	How to make a cocktail. Science Translational Medicine, 2016, 8, .	5.8	0
203	Synthetic lethality and beyond. Science Translational Medicine, 2016, 8, 365ec182.	5.8	Ο
204	Unleashing the wrath of Ras. Science Translational Medicine, 2017, 9, .	5.8	0
205	Punctuated evolution of copy-number alterations to define two molecular subtypes of muscle-invasive urothelial carcinoma Journal of Clinical Oncology, 2017, 35, 299-299.	0.8	0
206	The clone wars. Science Translational Medicine, 2017, 9, .	5.8	0
207	Phase I dose-escalation study of fractionated-dose 177Lu-PSMA-617 for progressive metastatic castration resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2017, 35, TPS5093-TPS5093.	0.8	0
208	Detection of germline deleterious mutations in prostate cancer patients with use of a validated 30-gene sequencing assay Journal of Clinical Oncology, 2018, 36, 223-223.	0.8	0
209	Clinical outcome of patients with germline DNA repair mutations: Results from a retrospective international study Journal of Clinical Oncology, 2018, 36, 218-218.	0.8	0
210	Detection of clinically-actionable alterations as hallmarks of <i>de novo</i> small cell prostate cancer Journal of Clinical Oncology, 2018, 36, e17072-e17072.	0.8	0
211	Risk of venous thromboembolism, survival, and expression of procoagulant genes in neuroendocrine versus castration-resistant prostate cancer Journal of Clinical Oncology, 2018, 36, e17039-e17039.	0.8	0
212	The genomic landscape of metastatic clear cell renal cell carcinoma (ccRCC) after treatment with systemic therapy Journal of Clinical Oncology, 2019, 37, 675-675.	0.8	0
213	Somatic alterations in a seven-gene DDR gene panel predicts platinum sensitivity in advanced prostate cancer patients Journal of Clinical Oncology, 2019, 37, 283-283.	0.8	0
214	SLFN11 expression (exp) in castration-resistant prostate cancer (CRPC) patients (pts) to predict response to platinum-based chemotherapy (PLT) Journal of Clinical Oncology, 2019, 37, 5065-5065.	0.8	0
215	Towards Biologically Driven Decision-making in Metastatic Hormone-sensitive Prostate Cancer. European Urology Oncology, 2021, 4, 924-924.	2.6	0
216	Extracellular Matrix in Synthetic Hydrogelâ€Based Prostate Cancer Organoids Regulate Therapeutic Response to EZH2 and DRD2 Inhibitors (Adv. Mater. 2/2022). Advanced Materials, 2022, 34, .	11.1	0

#	Article	IF	CITATIONS
217	Editorial: Metastatic prostate cancer: a wealth of data to put into practice. Current Opinion in Urology, 2022, 32, 267-268.	0.9	0
218	Factors that guide selection among androgen receptor inhibitors in patients with nonmetastatic castration-resistant prostate cancer Clinical Advances in Hematology and Oncology, 2022, 20 Suppl 9, 1-20.	0.3	0
219	Recent clinical trial data of androgen receptor inhibitors in patients with nonmetastatic castration-resistant prostate cancer Clinical Advances in Hematology and Oncology, 2022, 20 Suppl 9, 2-8.	0.3	0