Estela Blaisten-Barojas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8740897/publications.pdf

Version: 2024-02-01

100 papers 1,661 citations

331259 21 h-index 37 g-index

106 all docs 106
docs citations

106 times ranked 1226 citing authors

#	Article	IF	Citations
1	Modeling oxidised polypyrrole in the condensed phase with a novel force field. Journal of Physics Condensed Matter, 2022, 34, 185701.	0.7	O
2	Distinctive Formation of PEG-Lipid Nanopatches onto Solid Polymer Surfaces Interfacing Solvents from Atomistic Simulation. Journal of Physical Chemistry B, 2022, 126, 1598-1608.	1.2	1
3	Forecasting molecular dynamics energetics of polymers in solution from supervised machine learning. Chemical Science, 2022, 13, 7021-7033.	3.7	5
4	Solutions and Condensed Phases of PEG ₂₀₀₀ from All-Atom Molecular Dynamics. Journal of Physical Chemistry B, 2021, 125, 12892-12901.	1.2	8
5	Front Cover Image, Volume 2, Number 3, March 2020. Engineering Reports, 2020, 2, e12162.	0.9	0
6	Structure, energetics and thermodynamics of PLGA condensed phases from Molecular Dynamics. Polymer, 2020, 206, 122903.	1.8	8
7	Polyacrylamide in glycerol solutions from an atomistic perspective of the energetics, structure, and dynamics. AIP Advances, 2020, 10, .	0.6	4
8	Vortex generation in a finitely extensible nonlinear elastic Peterlin fluid initially at rest. Engineering Reports, 2020, 2, e12135.	0.9	7
9	Exploring with Molecular Dynamics the Structural Fate of PLGA Oligomers in Various Solvents. Journal of Physical Chemistry B, 2019, 123, 10233-10244.	1.2	18
10	Simulating the NaK Eutectic Alloy with Monte Carlo and Machine Learning. Scientific Reports, 2019, 9, 704.	1.6	5
11	Modeling the Tertiary Structure of the Rift Valley Fever Virus L Protein. Molecules, 2019, 24, 1768.	1.7	5
12	Polypyrrole on graphene: A density functional theory study. Surface Science, 2018, 674, 1-5.	0.8	13
13	Modeling the Tertiary Structure of a Multi-domain Protein. , 2018, , .		0
14	Monte Carlo Study of the Crystalline and Amorphous NaK Alloy. Procedia Computer Science, 2017, 108, 1215-1221.	1.2	1
15	Failure of logarithmic oscillators to serve as a thermostat for small atomic clusters. Physical Review E, 2014, 89, 021301.	0.8	5
16	The Metropolis Monte Carlo method with CUDA enabled Graphic Processing Units. Journal of Computational Physics, 2014, 258, 871-879.	1.9	13
17	Density functional theory study of neutral and oxidized thiophene oligomers. Journal of Chemical Physics, 2013, 139, 184905.	1.2	9
18	A cloud computing system in windows azure platform for data analysis of crystalline materials. Concurrency Computation Practice and Experience, 2013, 25, 2157-2169.	1.4	4

#	Article	IF	CITATIONS
19	Bipolarons and polaron pairs in oligopyrrole dications. Computational and Theoretical Chemistry, 2012, 993, 7-12.	1.1	9
20	Density functional theory study of dipicolinic acid isomers and crystalline polytypes. Computational and Theoretical Chemistry, 2011, 977, 148-156.	1.1	6
21	Lattice Thermal Conductivity in SiC Nanotubes, Nanowires and Nanofilaments: A Molecular Dynamics Study. Journal of Computational and Theoretical Nanoscience, 2011, 8, 529-534.	0.4	14
22	Density functional theory study of the structure and energetics of negatively charged oligopyrroles. International Journal of Quantum Chemistry, 2011, 111, 2295-2305.	1.0	56
23	Theoretical investigation of the photophysics of methyl salicylate isomers. Journal of Chemical Physics, 2011, 135, 164306.	1,2	15
24	Novel Approach for Clustering Zeolite Crystal Structures. Molecular Informatics, 2010, 29, 297-301.	1.4	9
25	Machine learning study of the heulandite family of zeolites. Microporous and Mesoporous Materials, 2010, 130, 309-313.	2.2	8
26	Monte Carlo study of oligopyrroles in condensed phases. Journal of Chemical Physics, 2010, 133, 034905.	1.2	15
27	Framework-Type Determination for Zeolite Structures in the Inorganic Crystal Structure Database. Journal of Physical and Chemical Reference Data, 2010, 39, .	1.9	17
28	Machine learning approach for structure-based zeolite classification. Microporous and Mesoporous Materials, 2009, 117, 339-349.	2.2	49
29	Identifying Zeolite Frameworks with a Machine Learning Approach. Journal of Physical Chemistry C, 2009, 113, 21721-21725.	1.5	36
30	Silicon carbide nanostructures: A tight binding approach. Journal of Chemical Physics, 2009, 130, 244704.	1.2	14
31	Effects of the interface between two Lennard-Jones crystals on the lattice vibrations: a molecular dynamics study. Journal of Physics Condensed Matter, 2009, 21, 345402.	0.7	13
32	Energetics and Vibrational Analysis of Methyl Salicylate Isomers. Journal of Physical Chemistry A, 2009, 113, 10385-10390.	1.1	23
33	A Cheminformatics Approach for Zeolite Framework Determination. Lecture Notes in Computer Science, 2009, , 160-168.	1.0	2
34	Energetics, Structure, and Electron Detachment Spectra of Calcium and Zinc Neutral and Anion Clusters: A Density Functional Theory Study. Journal of Physical Chemistry A, 2008, 112, 11052-11060.	1.1	7
35	Energetics, structure, and charge distribution of reduced and oxidized n-pyrrole oligomers: A density functional approach. Journal of Chemical Physics, 2008, 129, 164903.	1,2	27
36	Protein folding with the adaptive tempering Monte Carlo method. Molecular Simulation, 2007, 33, 577-582.	0.9	2

#	Article	IF	CITATIONS
37	Energetics and bonding in small lithiated carbon clusters. Computational and Theoretical Chemistry, 2007, 807, 163-172.	1.5	8
38	Energetics and bonding in beryllium metallized carbon clusters. Computational and Theoretical Chemistry, 2007, 824, 39-47.	1.5	17
39	Study of Solid–Liquid Phase Changes of Lennard-Jones Nanoclusters by NPT Monte Carlo Simulations. Journal of Computational and Theoretical Nanoscience, 2007, 4, 529-534.	0.4	1
40	Computational study of heat transport in compositionally disordered binary crystals. Acta Materialia, 2006, 54, 4633-4639.	3.8	2
41	Permeation in Gramicidin Ion Channels by Directly Estimating the Potential of Mean Force Using Brownian Dynamics Simulations. Journal of Computational and Theoretical Nanoscience, 2006, 3, 702-711.	0.4	5
42	Tight-binding Calcium Clusters from Adaptive Tempering Monte Carlo Simulation. Computing Letters, 2005, 1, 152-157.	0.5	2
43	Tight-binding model for calcium nanoclusters: Structural, electronic, and dynamical properties. Physical Review B, 2004, 70, .	1.1	14
44	Fission of doubly ionized calcium clusters. Chemical Physics Letters, 2004, 395, 109-113.	1.2	7
45	Pressure induced transitions in calcium: a tight-binding approach. Journal of Physics and Chemistry of Solids, 2003, 64, 185-192.	1.9	14
46	Electronic structure of calcium clusters. Physical Review A, 2001, 63, .	1.0	37
47	Strontium clusters: Many-body potential, energetics, and structural transitions. Journal of Chemical Physics, 2001, 115, 3640-3646.	1.2	25
48	Cluster-cluster aggregation in binary mixtures. Physical Review E, 2000, 61, 550-556.	0.8	16
49	Colloidal aggregation with mobile impurities. Physical Review E, 2000, 61, 6781-6788.	0.8	1
50	Many-body potential and structure for rhodium clusters. Journal of Chemical Physics, 2000, 112, 2301-2307.	1.2	39
51	On the Concentration Dependence of the Cluster Fractal Dimension in Colloidal Aggregation. Journal of Sol-Gel Science and Technology, 1999, 15, 119-127.	1.1	16
52	Structure and dynamics of alkali-metal clusters and fission of highly charged clusters. Physical Review B, 1998, 57, 15519-15532.	1.1	87
53	Structure function and fractal dimension of diffusion-limited colloidal aggregates. Physical Review E, 1998, 57, 4520-4527.	0.8	29
54	Magnetic and electronic properties of rhodium clusters. Physical Review A, 1998, 58, 2196-2202.	1.0	72

#	Article	IF	CITATIONS
55	Nonlinear coupling between rotation and internal vibration in simple molecular systems. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, 309-318.	0.6	2
56	Irregular scattering of particles confined to ring-bounded cavities. Journal of Statistical Physics, 1997, 87, 137-146.	0.5	1
57	Molecular dynamics study of neutral and multiply charged sodium clusters. Chemical Physics Letters, 1997, 268, 331-336.	1.2	13
58	Properties of Silicon Nanoparticles:Â A Molecular Dynamics Study. The Journal of Physical Chemistry, 1996, 100, 14856-14864.	2.9	63
59	Concentration dependence of structural and dynamical quantities in colloidal aggregation: Computer simulations. Physical Review E, 1996, 54, 5456-5462.	0.8	49
60	Atomistic Simulation of Vapor-Phase Nanoparticle Formation. Materials Research Society Symposia Proceedings, 1994, 351, 343.	0.1	1
61	Dynamics of Nanometer SiO2 Particles and their Coalescence Characteristics. Materials Research Society Symposia Proceedings, 1994, 366, 173.	0.1	0
62	Fragmentation of Highly Charged Metallic Clusters. Materials Research Society Symposia Proceedings, 1994, 366, 341.	0.1	0
63	Molecular Dynamics Simulation of Large Cluster Growth. Materials Research Society Symposia Proceedings, 1993, 334, 75.	0.1	1
64	The vibrational line shape of diatomic adsorbates on metal clusters. Journal of Chemical Physics, 1992, 97, 862-870.	1.2	9
65	Molecular-dynamics study of cluster growth by cluster-cluster collisions. Physical Review B, 1992, 45, 4403-4408.	1.1	35
66	MOLECULAR DYNAMICS STUDY OF CLUSTER GROWTH AND POLYMER DEGRADATION. International Journal of Modern Physics B, 1992, 06, 3643-3655.	1.0	0
67	Molecular dynamics study of the depolymerization reaction in simple polymers. Chemical Physics Letters, 1990, 171, 499-505.	1.2	12
68	Correlated walk model of the melting transition in small clusters. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 2351.	1.7	3
69	Phenomenological model of melting in Lennard-Jones clusters. Physical Review B, 1989, 40, 4749-4759.	1.1	42
70	Model potential for beryllium clusters. Zeitschrift Fýr Physik D-Atoms Molecules and Clusters, 1989, 12, 77-79.	1.0	1
71	More on the melting of Lennard-Jones clusters. Zeitschrift F \tilde{A}^{1} /4r Physik D-Atoms Molecules and Clusters, 1989, 12, 181-183.	1.0	2
72	New potentials for Si2+. Chemical Physics Letters, 1988, 150, 259-262.	1.2	4

#	Article	lF	CITATIONS
73	Development of a First-Principles Many-Body Potential for Beryllium. Physical Review Letters, 1988, 61, 1477-1480.	2.9	65
74	Melting and freezing of Lennard-Jones clusters on a surface. Physical Review B, 1987, 36, 8447-8455.	1.1	49
75	Structural and Dynamical Properties of Clusters on A Substrate. Jerusalem Symposia on Quantum Chemistry and Biochemistry, 1987, , 241-251.	0.2	0
76	Molecular-dynamics simulation of silicon clusters. Physical Review B, 1986, 34, 3910-3916.	1.1	110
77	Effect of three-body interactions on the early stages of atomic cluster growth. Chemical Physics Letters, 1986, 124, 84-89.	1.2	17
78	Libron–phonon coupling effect on the infrared absorption spectra of molecules trapped in matrices. Journal of Chemical Physics, 1985, 83, 4311-4318.	1.2	7
79	The libron–phonon coupling and the IR absorption spectra of diatomic molecules in a simple liquid. Journal of Chemical Physics, 1985, 82, 1772-1778.	1.2	1
80	Effects of three-body interactions on the structure of clusters. Surface Science, 1985, 156, 548-555.	0.8	27
81	Electronic structure and vibrational analysis of the alkali peroxides K2O2 and Rb2O2. Chemical Physics Letters, 1984, 108, 237-240.	1.2	5
82	Study of the correlated walks with reflecting walls. Journal of Chemical Physics, 1982, 76, 601-608.	1.2	7
83	A correlated walk model for thermally stimulated depolarization currents in αâ€keratin. Journal of Chemical Physics, 1982, 76, 5643-5645.	1.2	4
84	LCAO–MO–SCF calculation of the metal–oxygen bonding in the M2O2 series: M = Li, Na, and K. Journal of Chemical Physics, 1981, 75, 787-792.	1.2	10
85	Helix–coil transition of polypeptides on the basis of correlated walks. Journal of Chemical Physics, 1981, 75, 3097-3102.	1.2	14
86	The helix-coil transition based on correlated walks. Ferroelectrics, 1980, 30, 299-304.	0.3	2
87	Theory of atomic diffusion in cubic crystals with impurities based on the correlated-walks theory. Physical Review B, 1980, 22, 1638-1644.	1.1	32
88	Study of a Lorentzâ€gas based on correlated walks. Journal of Chemical Physics, 1980, 73, 4569-4576.	1.2	16
89	Ab initio molecular orbital study of the catalytic exchange reaction between hydrogen and sodium amide. Journal of Chemical Physics, 1979, 71, 5124.	1.2	3
90	Non-additive interactions in liquid helium solvent effects. Molecular Physics, 1979, 37, 599-606.	0.8	14

#	Article	IF	CITATIONS
91	Two examples of electronic spectrum fluctuations in microparticles. Physics Letters, Section A: General, Atomic and Solid State Physics, 1978, 69, 142-144.	0.9	3
92	Theoretical study on a reaction pathway of Ziegler–Nattaâ€ŧype catalysis. Journal of Chemical Physics, 1978, 68, 2337-2351.	1.2	118
93	Role of threeâ€body interactions in trimer binding. Journal of Chemical Physics, 1977, 67, 4701-4705.	1.2	15
94	Dependence of the specific heat on the spectrum fluctuations. Physics Letters, Section A: General, Atomic and Solid State Physics, 1977, 61, 146-148.	0.9	3
95	Studies on the problem of small metallic particles. I. $\hat{a}\in$ "Spectrum fluctuations in a two-dimensional model and the associated specific heat. Annals of Physics, 1977, 107, 95-109.	1.0	18
96	IR absorption spectrum of molecules trapped in matrices. I. The libron-phonon coupling in 1D. Journal of Physics C: Solid State Physics, 1976, 9, 3121-3139.	1.5	9
97	Solvent effects of liquid helium on He2. Molecular Physics, 1976, 31, 1941-1944.	0.8	6
98	An application of Green's functions to the study of the vibration-translation coupling of trapped oscillators in a linear chain. International Journal of Quantum Chemistry, 1973, 7, 195-213.	1.0	16
99	Calculation of the Magnetic Moment of Atomic Oxygen. Physical Review, 1969, 177, 432-434.	2.7	8
100	Calculation of the Magnetic Moment of Atomic Fluorine. Physical Review, 1968, 172, 44-49.	2.7	11