Eduardo Nava

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8740849/publications.pdf Version: 2024-02-01

Ευπνώο Νάγγ

#	Article	IF	CITATIONS
1	Acute Bacterial Skin and Skin-Structure Infections, efficacy of Dalbavancin: a systematic review and meta-analysis. Expert Review of Anti-Infective Therapy, 2022, 20, 1477-1489.	2.0	9
2	Pathogenic Microenvironment from Diabetic–Obese Visceral and Subcutaneous Adipocytes Activating Differentiation of Human Healthy Preadipocytes Increases Intracellular Fat, Effect of the Apocarotenoid Crocetin. Nutrients, 2021, 13, 1032.	1.7	4
3	Neurological Symptoms of COVID-19: The Zonulin Hypothesis. Frontiers in Immunology, 2021, 12, 665300.	2.2	29
4	Crocetin Isolated from the Natural Food Colorant Saffron Reduces Intracellular Fat in 3T3-L1 Adipocytes. Foods, 2020, 9, 1648.	1.9	7
5	The Local Regulation of Vascular Function: From an Inside-Outside to an Outside-Inside Model. Frontiers in Physiology, 2019, 10, 729.	1.3	44
6	Comment on "The paracrine control of vascular motion. A historical perspectiveâ€: Pharmacological Research, 2017, 119, 495.	3.1	0
7	Influence of the perioperative administration of magnesium sulfate on the total dose of anesthetics during general anesthesia. A systematic review and meta-analysis. Journal of Clinical Anesthesia, 2017, 39, 129-138.	0.7	40
8	The paracrine control of vascular motion. A historical perspective. Pharmacological Research, 2016, 113, 125-145.	3.1	28
9	Interaction between magnesium sulfate and neuromuscular blockers during the perioperative period. A systematic review and meta-analysis. Journal of Clinical Anesthesia, 2016, 34, 524-534.	0.7	17
10	Bcl-xL-mediated antioxidant function abrogates the disruption of mitochondrial dynamics induced by LRRK2 inhibition. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 20-31.	1.8	10
11	Rotenone Induces the Formation of 4-Hydroxynonenal Aggresomes. Role of ROS-Mediated Tubulin Hyperacetylation and Autophagic Flux Disruption. Molecular Neurobiology, 2016, 53, 6194-6208.	1.9	35
12	Effects of Crocetin Esters and Crocetin from Crocus sativus L. on Aortic Contractility in Rat Genetic Hypertension. Molecules, 2015, 20, 17570-17584.	1.7	31
13	Crocetin, a Carotenoid Derived from Saffron (<i>Crocus sativus</i> L.), Improves Acetylcholine-Induced Vascular Relaxation in Hypertension. Journal of Vascular Research, 2014, 51, 393-404.	0.6	39
14	EEG characterization of audiogenic seizures in the hamster strain GASH:Sal. Epilepsy Research, 2013, 106, 318-325.	0.8	20
15	Vasoactive effects of prostaglandins from the perivascular fat of mesenteric resistance arteries in WKY and SHROB rats. Life Sciences, 2013, 93, 1023-1032.	2.0	42
16	Hypertension in Metabolic Syndrome: Vascular Pathophysiology. International Journal of Hypertension, 2013, 2013, 1-15.	0.5	68
17	Opposite caudal versus rostral brain nitric oxide synthase response to generalized seizures in a novel rodent model of reflex epilepsy. Life Sciences, 2012, 90, 531-537.	2.0	13
18	Effects of Pioglitazone and Rosiglitazone on Vascular Function of Mesenteric Resistance Arteries in Rat Genetic Hypertension. Pharmacology, 2011, 88, 72-81.	0.9	8

Eduardo Nava

#	Article	IF	CITATIONS
19	Reactivity of the aorta and mesenteric resistance arteries from the obese spontaneously hypertensive rat: effects of glitazones. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1319-H1330.	1.5	22
20	Potential Benefits of Clitazones for Cancer and Vascular Disease. Current Drug Therapy, 2008, 3, 111-125.	0.2	4
21	Effects of pioglitazone and rosiglitazone on aortic vascular function in rat genetic hypertension. European Journal of Pharmacology, 2007, 575, 105-112.	1.7	11
22	The senescence-accelerated mouse (SAM-P8) as a model for the study of vascular functional alterations during aging. Biogerontology, 2007, 8, 663-672.	2.0	28
23	Assessment of the nitric oxide system in the heart, aorta and kidney of aged Wistar–Kyoto and spontaneously hypertensive rats. Journal of Hypertension, 2005, 23, 1507-1514.	0.3	22
24	Distribution of nitric oxide synthases and nitrotyrosine in the kidney of spontaneously hypertensive rats. Journal of Hypertension, 2003, 21, 2375-2388.	0.3	21
25	Cardiovascular Diseases and the Nitric Oxide Pathway. Current Vascular Pharmacology, 2003, 1, 335-346.	0.8	33
26	Changes in NOS activity and protein expression during acute and prolonged ANG II administration. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 282, R31-R37.	0.9	40
27	The nitric oxide pathway in the cardiovascular system. Journal of Physiology and Biochemistry, 2002, 58, 179-188.	1.3	49
28	Depletion of liver glutathione potentiates the oxidative stress and decreases nitric oxide synthesis in a rat endotoxin shock model. Critical Care Medicine, 2000, 28, 2002-2006.	0.4	68
29	Renal Changes Induced by Nitric Oxide and Prostaglandin Synthesis Reduction. Hypertension, 1998, 31, 657-664.	1.3	6
30	Role of Nitric Oxide and Prostaglandins in the Long-term Control of Renal Function. Hypertension, 1998, 32, 33-38.	1.3	22
31	Alterations to the nitric oxide pathway in the spontaneously hypertensive rat. Journal of Hypertension, 1998, 16, 609-615.	0.3	75
32	NO and Hypertension. , 1997, , 368-383.		0
33	Spontaneous Calcium-Independent Nitric Oxide Synthase Activity in Porcine Ciliary Processes. Biochemical and Biophysical Research Communications, 1996, 222, 786-789.	1.0	13
34	Cyclic guanosine 3'3' monophosphate concentrations in pre-eclampsia: effects of hydralazine. BJOG: an International Journal of Obstetrics and Gynaecology, 1996, 103, 33-38.	1.1	67
35	Antihypertensive Therapy Prevents Endothelial Dysfunction in Chronic Nitric Oxide Deficiency. Hypertension, 1996, 27, 25-31.	1.3	91
36	Endothelium-derived vasoactive factors in hypertension: nitric oxide and endothelin. Journal of Hypertension, 1995, 13, S39-S48.	0.3	67

#	Article	IF	CITATIONS
37	Nitric Oxide in Cardiovascular Diseases. Annals of Medicine, 1995, 27, 343-351.	1.5	56
38	Increased Activity of Constitutive Nitric Oxide Synthase in Cardiac Endothelium in Spontaneous Hypertension. Circulation, 1995, 91, 2310-2313.	1.6	103