
Craig F Morris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/874068/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increasing the Versatility of Durum Wheat through Modifications of Protein and Starch Composition and Grain Hardness. Foods, 2022, 11, 1532.	4.3	16
2	Roller milling performance of dry yellow split peas: Mill stream composition and functional characteristics. Cereal Chemistry, 2021, 98, 462-473.	2.2	7
3	Soft durum wheat as a potential ingredient for direct expanded extruded products. Journal of Cereal Science, 2021, 98, 103184.	3.7	2
4	The antimicrobial properties of the puroindolines, a review. World Journal of Microbiology and Biotechnology, 2019, 35, 86.	3.6	14
5	Physical Mapping of Peroxidase Genes and Development of Functional Markers for TaPod-D1 on Bread Wheat Chromosome 7D. Frontiers in Plant Science, 2019, 10, 523.	3.6	8
6	Genetic analysis of a unique †̃super soft' kernel texture phenotype in soft white spring wheat. Journal of Cereal Science, 2019, 85, 162-167.	3.7	15
7	Mapping kernel texture in a soft durum (Triticum turgidum subsp. durum) wheat population. Journal of Cereal Science, 2019, 85, 20-26.	3.7	10
8	Wheat breeding for quality: A historical review. Cereal Chemistry, 2018, 95, 17-34.	2.2	79
9	Structural consequences of the interaction of puroindolines with gluten proteins. Food Chemistry, 2018, 253, 255-261.	8.2	19
10	Relationships between Falling Number, αâ€amylase activity, milling, cookie, and sponge cake quality of soft white wheat. Cereal Chemistry, 2018, 95, 373-385.	2.2	32
11	Regarding Neapolitan Pizza "Pizza Napoletana― Cereal Chemistry, 2018, 95, 365-366.	2.2	0
12	Evaluation of commercial αâ€amylase enzymeâ€linked immunosorbent assay (ELISA) test kits for wheat. Cereal Chemistry, 2018, 95, 206-210.	2.2	3
13	Genetic analysis of kernel texture (grain hardness) in a hard red spring wheat (Triticum aestivum L.) bi-parental population. Journal of Cereal Science, 2018, 79, 57-65.	3.7	25
14	Influence of Soft Kernel Texture on Fresh Durum Pasta. Journal of Food Science, 2018, 83, 2812-2818.	3.1	11
15	Determinants of wheat noodle color. Journal of the Science of Food and Agriculture, 2018, 98, 5171-5180.	3.5	42
16	Microwave fixation enhances gluten fibril formation in wheat endosperm. Cereal Chemistry, 2018, 95, 536-542.	2.2	0
17	Color characteristics of white salted, alkaline, and egg noodles prepared from <i>Triticum aestivum</i> L. and a soft kernel durum <i>T. turgidum</i> ssp. <i>durum</i> . Cereal Chemistry, 2018, 95, 747-759.	2.2	9
18	Genetic Dissection of End-Use Quality Traits in Adapted Soft White Winter Wheat. Frontiers in Plant Science, 2018, 9, 271.	3.6	43

#	Article	IF	CITATIONS
19	Development of haplotype-specific molecular markers for the low-molecular-weight glutenin subunits. Molecular Breeding, 2018, 38, 1.	2.1	5
20	Evidence of intralocus recombination at the Glu-3 loci in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2017, 130, 891-902.	3.6	9
21	Identification of SNPs, QTLs, and dominant markers associated with wheat grain flavor using genotyping-by-sequencing. Journal of Cereal Science, 2017, 76, 140-147.	3.7	3
22	Lexicon Development, Consumer Acceptance, and Drivers of Liking of Quinoa Varieties. Journal of Food Science, 2017, 82, 993-1005.	3.1	48
23	Definition of the low molecular weight glutenin subunit gene family members in a set of standard bread wheat (Triticum aestivum L.) varieties. Journal of Cereal Science, 2017, 74, 263-271.	3.7	27
24	Changes in the phenolic acids composition during pancake preparation: Whole and refined grain flour and processed food classification by UV and NIR spectral fingerprinting method—Proof of concept. Journal of Food Composition and Analysis, 2017, 60, 10-16.	3.9	14
25	Influence of Soft Kernel Texture on the Flour, Water Absorption, Rheology, and Baking Quality of Durum Wheat. Cereal Chemistry, 2017, 94, 215-222.	2.2	22
26	Influence of Low-Molecular-Weight Glutenin Subunit Haplotypes on Dough Rheology in Elite Common Wheat Varieties. Cereal Chemistry, 2017, 94, CCHEM-07-17-013.	2.2	8
27	Pasta Production: Complexity in Defining Processing Conditions for Reference Trials and Quality Assessment Methods. Cereal Chemistry, 2017, 94, 791-797.	2.2	8
28	Quinoa Starch Characteristics and Their Correlations with the Texture Profile Analysis (TPA) of Cooked Quinoa. Journal of Food Science, 2017, 82, 2387-2395.	3.1	45
29	Identification of genotyping-by-sequencing sequence tags associated with milling performance and end-use quality traits in hard red spring wheat (Triticum aestivum L.). Journal of Cereal Science, 2017, 77, 73-83.	3.7	28
30	Genetic analysis of soft white wheat end-use quality traits in a club by common wheat cross. Journal of Cereal Science, 2017, 76, 148-156.	3.7	33
31	Improving Genomic Prediction for Preâ€Harvest Sprouting Tolerance in Wheat by Weighting Largeâ€Effect Quantitative Trait Loci. Crop Science, 2017, 57, 1315-1324.	1.8	22
32	Endâ€Use Quality of CIMMYTâ€Derived Softâ€Kernel Durum Wheat Germplasm: II. Dough Strength and Pan Bread Quality. Crop Science, 2017, 57, 1485-1494.	1.8	28
33	Registration of â€ ⁻ Pritchett' Soft White Winter Club Wheat. Journal of Plant Registrations, 2017, 11, 152-158.	0.5	6
34	Endâ€Use Quality of CIMMYTâ€Derived Softâ€Kernel Durum Wheat Germplasm: I. Grain, Milling, and Soft Wheat Quality. Crop Science, 2017, 57, 1475-1484.	1.8	24
35	Molecular and Cytogenetic Characterization of the 5DS–5BS Chromosome Translocation Conditioning Soft Kernel Texture in Durum Wheat. Plant Genome, 2017, 10, plantgenome2017.04.0031.	2.8	24
36	Quinoa Seed Quality Response to Sodium Chloride and Sodium Sulfate Salinity. Frontiers in Plant Science, 2016, 7, 790.	3.6	29

#	Article	IF	CITATIONS
37	Endâ€Use Quality and Agronomic Characteristics Associated with the <i>Gluâ€B1al</i> Highâ€Molecularâ€Weight Glutenin Allele in U.S. Hard Winter Wheat. Crop Science, 2016, 56, 2348-2353.	1.8	18

39	Effect of Soft Kernel Texture on the Milling Properties of Soft Durum Wheat. Cereal Chemistry, 2016, 93, 513-517.	2.2	37
40	Identifying genetic markers of wheat (Triticum aestivum) associated with flavor preference using a laboratory mouse model. Journal of Cereal Science, 2016, 71, 153-159.	3.7	2
41	Physical, Textural, and Antioxidant Properties of Extruded Waxy Wheat Flour Snack Supplemented with Several Varieties of Bran. Journal of Food Science, 2016, 81, E2726-E2733.	3.1	20
42	Effect of wheat (Triticum aestivum L.) seed color and hardness genes on the consumption preference of the house mouse (Mus musculus L.). Mammalia, 2016, 80, .	0.7	2
43	Use of Student's t statistic as a phenotype of relative consumption preference of wheat (Triticum) Tj ETQq1 1 0	.784314 r 3.7	gBT ₄ /Overlo
44	Repeatability of Mice Consumption Discrimination of Wheat (<i>Triticum aestivum</i> L.) Varieties across Field Experiments and Mouse Cohorts. Journal of Food Science, 2015, 80, S1589-94.	3.1	4
45	Arabinoxylan content and characterisation throughout the breadâ€baking process. International Journal of Food Science and Technology, 2015, 50, 1911-1921.	2.7	19
46	Waxy Soft White Wheat: Extrusion Characteristics and Thermal and Rheological Properties. Cereal Chemistry, 2015, 92, 145-153.	2.2	37
47	Internal structure of carbonized wheat (Triticum spp.) grains: relationships to kernel texture and ploidy. Vegetation History and Archaeobotany, 2015, 24, 503-515.	2.1	10
48	Functional and Nutritional Characteristics of Wheat Grown in Organic and Conventional Cropping Systems. Cereal Chemistry, 2015, 92, 504-512.	2.2	12
49	Phytochemical Profile and Antiproliferative Activity of Dough and Bread Fractions Made from Refined and Whole Wheat Flours. Cereal Chemistry, 2015, 92, 271-277.	2.2	13
50	Tracking Arabinoxylans Through the Preparation of Pancakes. Cereal Chemistry, 2015, 92, 37-43.	2.2	8
51	Modeling Endâ€Use Quality in U.S. Soft Wheat Germplasm. Cereal Chemistry, 2015, 92, 57-64.	2.2	29
52	Genetics of Endâ€Use Quality Differences between a Modern and Historical Spring Wheat. Crop Science, 2014, 54, 1972-1980.	1.8	21
53	Polyphenol oxidase as a biochemical seed defense mechanism. Frontiers in Plant Science, 2014, 5, 689.	3.6	62
54	Evaluation of Texture Differences among Varieties of Cooked Quinoa. Journal of Food Science, 2014, 79, S2337-45.	3.1	46

67

#	Article	IF	CITATIONS
55	Effect of Processing on Phenolic Composition of Dough and Bread Fractions Made from Refined and Whole Wheat Flour of Three Wheat Varieties. Journal of Agricultural and Food Chemistry, 2014, 62, 10431-10436.	5.2	57
56	The House Mouse (<i>Mus musculus</i> L.) Exerts Strong Differential Grain Consumption Preferences among Hard Red and White Spring Wheat (<i>Triticum aestivum</i> L.) Varieties in a Singleâ€Elimination Tournament Design. Journal of Food Science, 2014, 79, S2323-9.	3.1	5
57	A review of the occurrence of Grain softness protein-1 genes in wheat (Triticum aestivum L.). Plant Molecular Biology, 2013, 83, 507-521.	3.9	28
58	Molecular characterization and diversity of puroindoline b-2 variants in cultivated and wild diploid wheat. Genetic Resources and Crop Evolution, 2013, 60, 49-58.	1.6	5
59	Segregation analysis indicates that Puroindoline b-2 variants 2 and 3 are allelic inÂTriticum aestivum and that a revision to Puroindoline b-2 gene symbolization isÂindicated. Journal of Cereal Science, 2013, 57, 61-66.	3.7	8
60	Allelic variation and distribution independence of Puroindoline b-B2 variants and their association with grain texture in wheat. Molecular Breeding, 2013, 32, 399-409.	2.1	13
61	Wheat Arabinoxylan Structure Provides Insight into Function. Cereal Chemistry, 2013, 90, 387-395.	2.2	56
62	Optimizing Experimental Design Using the House Mouse (<i>Mus musculus</i> L.) as a Model for Determining Grain Feeding Preferences. Journal of Food Science, 2013, 78, S1614-S1620.	3.1	10
63	A Comprehensive Survey of Soft Wheat Grain Quality in U.S. Germplasm. Cereal Chemistry, 2013, 90, 47-57.	2.2	38
64	Registration of â€~Cara' Soft White Winter Club Wheat. Journal of Plant Registrations, 2013, 7, 81-88.	0.5	10
65	Physical Mapping of <i>Puroindoline bâ€2</i> Genes in Wheat using †Chinese Spring' Chromosome Group 7 Deletion Lines. Crop Science, 2012, 52, 2674-2678.	1.8	18
66	A Critical Assessment of the Quantification of Wheat Grain Arabinoxylans Using a Phloroglucinol Colorimetric Assay. Cereal Chemistry, 2012, 89, 143-150.	2.2	27
67	Influence of Instrument Rigidity and Specimen Geometry on Calculations of Compressive Strength Properties of Wheat Endosperm. Cereal Chemistry, 2012, 89, 24-29.	2.2	7
68	Some observations on the granivorous feeding behavior preferences of the house mouse (Mus) Tj ETQq0 0 0 rgB1	- Overlocl	k
69	Phytochemical Composition, Anti-inflammatory, and Antiproliferative Activity of Whole Wheat Flour. Journal of Agricultural and Food Chemistry, 2012, 60, 2129-2135.	5.2	56
70	Prevalence of Puroindoline D1 and Puroindoline b-2 variants in U.S. Pacific Northwest wheat breeding germplasm pools, and their association with kernel texture. Theoretical and Applied Genetics, 2012, 124, 1259-1269.	3.6	21
71	The distal portion of the short arm of wheat (Triticum aestivum L.) chromosome 5D controls endosperm vitreosity and grain hardness. Theoretical and Applied Genetics, 2012, 125, 247-254.	3.6	33

72Transfer of Soft Kernel Texture from <i>Triticum aestivum</i><to>to Durum Wheat, <i>Triticum
turgidum</i><to>ssp. <i>durum</i><to>Crop Science, 2011, 51, 114-122.1.8

#	Article	IF	CITATIONS
73	Collaborative Analysis of Wheat Endosperm Compressive Material Properties. Cereal Chemistry, 2011, 88, 391-396.	2.2	6
74	Characterization of a Unique "Super Soft―Kernel Trait in Wheat. Cereal Chemistry, 2011, 88, 576-583.	2.2	19
75	Endogenous and Enhanced Oxidative Crossâ€Linking in Wheat Flour Mill Streams. Cereal Chemistry, 2011, 88, 217-222.	2.2	11
76	Flour Mill Stream Blending Affects Sugar Snap Cookie and Japanese Sponge Cake Quality and Oxidative Crossâ€Linking Potential of Soft White Wheat. Journal of Food Science, 2011, 76, C1300-6.	3.1	26
77	Distribution of Total, Waterâ€Unextractable, and Waterâ€Extractable Arabinoxylans in Wheat Flour Mill Streams. Cereal Chemistry, 2011, 88, 209-216.	2.2	29
78	Physical mapping and a new variant of Puroindoline b-2 genes in wheat. Theoretical and Applied Genetics, 2010, 120, 745-751.	3.6	43
79	Effect of the grain protein content locus Gpc-B1 on bread and pasta quality. Journal of Cereal Science, 2010, 51, 357-365.	3.7	59
80	Molecular characterization of the Puroindoline a-D1b allele and development of an STS marker in wheat (Triticum aestivum L.). Journal of Cereal Science, 2010, 52, 80-82.	3.7	25
81	Field emission scanning electron and atomic force microscopy, and Raman andÂX-ray photoelectron spectroscopy characterization of near-isogenic soft andÂhard wheat kernels and corresponding flours. Journal of Cereal Science, 2010, 52, 136-142.	3.7	14
82	Association of Puroindoline b-B2 variants with grain traits, yield components and flag leaf size in bread wheat (Triticum aestivum L.) varieties of the Yellow and Huai Valleys of China. Journal of Cereal Science, 2010, 52, 247-253.	3.7	29
83	Identification of differentially expressed UniGenes in developing wheat seed using Digital Differential Display. Journal of Cereal Science, 2009, 49, 316-318.	3.7	6
84	Milling and Chinese raw white noodle qualities of common wheat near-isogenic lines differing in puroindoline b alleles. Journal of Cereal Science, 2009, 50, 126-130.	3.7	32
85	Seedâ€specific expression of the wheat puroindoline genes improves maize wet milling yields. Plant Biotechnology Journal, 2009, 7, 733-743.	8.3	32
86	Genotype and Environment Variation for Arabinoxylans in Hard Winter and Spring Wheats of the U.S. Pacific Northwest. Cereal Chemistry, 2009, 86, 88-95.	2.2	53
87	A Comprehensive Genotype and Environment Assessment of Wheat Grain Ash Content in Oregon and Washington: Analysis of Variation. Cereal Chemistry, 2009, 86, 307-312.	2.2	22
88	Rapid and Targeted Introgression of Genes into Popular Wheat Cultivars Using Marker-Assisted Background Selection. PLoS ONE, 2009, 4, e5752.	2.5	78
89	Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Molecular Biology, 2008, 66, 205-219.	3.9	243
90	Molecular genetics of puroindolines and related genes: regulation of expression, membrane binding properties and applications. Plant Molecular Biology, 2008, 66, 221-231.	3.9	147

#	Article	IF	CITATIONS
91	Silencing of puroindoline a alters the kernel texture in transgenic bread wheat. Journal of Cereal Science, 2008, 47, 331-338.	3.7	26
92	Reconciliation of D-genome puroindoline allele designations with current DNA sequence data. Journal of Cereal Science, 2008, 48, 277-287.	3.7	80
93	Prevalence of puroindoline alleles in wheat varieties from eastern Asia including the discovery of a new SNP in puroindoline b. Plant Genetic Resources: Characterisation and Utilisation, 2008, 6, 142-152.	0.8	15
94	Compressive Strength of Wheat Endosperm: Analysis of Endosperm Bricks. Cereal Chemistry, 2008, 85, 351-358.	2.2	15
95	Compressive Strength of Wheat Endosperm: Comparison of Endosperm Bricks to the Single Kernel Characterization System. Cereal Chemistry, 2008, 85, 359-365.	2.2	13
96	Agronomic and Quality Evaluation of Common Wheat Nearâ€Isogenic Lines Carrying the Leaf Rust Resistance Gene <i>Lr47</i> . Crop Science, 2008, 48, 1441-1451.	1.8	28
97	A Device for the Preparation of Cereal Endosperm Bricks. Cereal Chemistry, 2007, 84, 67-69.	2.2	7
98	A critical examination of the sodium dodecyl sulfate (SDS) sedimentation test for wheat meals. Journal of the Science of Food and Agriculture, 2007, 87, 607-615.	3.5	26
99	Polyphenol oxidase (PPO) in wheat and wild relatives: molecular evidence for a multigene family. Theoretical and Applied Genetics, 2007, 114, 1239-1247.	3.6	35
100	Polyphenol Oxidase in Wheat Grain: Whole Kernel and Bran Assays for Total and Soluble Activity. Cereal Chemistry, 2006, 83, 10-16.	2.2	29
101	Delineating the Role of Polyphenol Oxidase in the Darkening of Alkaline Wheat Noodles. Journal of Agricultural and Food Chemistry, 2006, 54, 2378-2384.	5.2	90
102	Molecular Evolution of the Puroindoline-a, Puroindoline-b, and Grain Softness Protein-1 Genes in the Tribe Triticeae. Journal of Molecular Evolution, 2006, 63, 526-536.	1.8	49
103	Conserved regulatory elements identified from a comparative puroindoline gene sequence survey of Triticum and Aegilops diploid taxa. Journal of Cereal Science, 2006, 44, 21-33.	3.7	26
104	Biochemical and genetic characterization of wheat (Triticum spp.) kernel polyphenol oxidases. Journal of Cereal Science, 2006, 44, 353-367.	3.7	33
105	Occurrence of Puroindoline Alleles in Chinese Winter Wheats. Cereal Chemistry, 2005, 82, 38-43.	2.2	54
106	A new puroindoline b mutation present in Chinese winter wheat cultivar Jingdong 11. Journal of Cereal Science, 2005, 42, 267-269.	3.7	42
107	Kernel texture differences among US soft wheat cultivars. Journal of the Science of Food and Agriculture, 2005, 85, 1959-1965.	3.5	19
108	Evaluation of maternal parent and puroindoline allele on kernel texture in a reciprocal cross between two hard spring wheat cultivars. Euphytica, 2005, 141, 121-127.	1.2	5

#	Article	IF	CITATIONS
109	Characterization of the end-use quality of soft wheat cultivars from the eastern and western US germplasm ?pools?. Plant Genetic Resources: Characterisation and Utilisation, 2004, 2, 59-69.	0.8	26
110	Purification and Analysis of Wheat Grain Polyphenol Oxidase (PPO) Protein. Cereal Chemistry, 2003, 80, 135-143.	2.2	36
111	Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Molecular Biology, 2002, 48, 633-647.	3.9	464
112	Title is missing!. Euphytica, 2002, 126, 321-331.	1.2	41
113	Wheat Polyphenol Oxidase. Crop Science, 2001, 41, 1750-1757.	1.8	69
114	Breadmaking Quality of Selected Durum Wheat Genotypes and Its Relationship with High Molecular Weight Glutenin Subunits Allelic Variation and Gluten Protein Polymeric Composition. Cereal Chemistry, 2000, 77, 230-236.	2.2	71
115	Relationships Among Grain Hardness, Pentosan Fractions, and End-Use Quality of Wheat. Cereal Chemistry, 2000, 77, 241-247.	2.2	109
116	Optimizing the SDS Sedimentation Test for End-Use Quality Selection in a Soft White and Club Wheat Breeding Program. Cereal Chemistry, 1999, 76, 907-911.	2.2	63
117	Wheat Grain Hardness Among Chromosome 5D Homozygous Recombinant Substitution Lines Using Different Methods of Measurement. Cereal Chemistry, 1999, 76, 249-254.	2.2	41
118	Sources of Variation for Starch Gelatinization, Pasting, and Gelation Properties in Wheat. Cereal Chemistry, 1997, 74, 63-71.	2.2	276
119	A computer-aided approach to the evaluation of wheat grain and flour quality. Computers and Electronics in Agriculture, 1994, 11, 229-237.	7.7	4
120	Isolation of Mature Cereal Embryos and Embryonic Axes. Crop Science, 1993, 33, 1007-1015.	1.8	1
121	Cloning and expression of an embryo-specific mRNA up-regulated in hydrated dormant seeds. Plant Molecular Biology, 1992, 19, 433-441.	3.9	86
122	Sequence analysis of a cDNA encoding a Group 3 LEA mRNA inducible by ABA or dehydration stress in wheat. Plant Molecular Biology, 1991, 16, 1073-1076.	3.9	68
123	Molecular Cloning and Expression of Abscisic Acid-Responsive Genes in Embryos of Dormant Wheat Seeds. Plant Physiology, 1991, 95, 814-821.	4.8	103

124 Identification and genetic characterization of extra soft kernel texture in soft kernel durum wheat () Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5