Jianhua Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8740504/publications.pdf

Version: 2024-02-01

19	2,373	15	19
papers	citations	h-index	g-index
19	19	19	2762
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Abiotic stress responses in plants. Nature Reviews Genetics, 2022, 23, 104-119.	16.3	710
2	Two Triacylglycerol Lipases Are Negative Regulators of Chilling Stress Tolerance in Arabidopsis. International Journal of Molecular Sciences, 2022, 23, 3380.	4.1	4
3	Overexpression of SIBBX17 affects plant growth and enhances heat tolerance in tomato. International Journal of Biological Macromolecules, 2022, 206, 799-811.	7.5	19
4	Modulation of plant development and chilling stress responses by alternative splicing events under control of the spliceosome protein SmEb in <i>Arabidopsis</i> . Plant, Cell and Environment, 2022, 45, 2762-2779.	5 . 7	4
5	Identification, Classification, and Expression Analysis of the Triacylglycerol Lipase (TGL) Gene Family Related to Abiotic Stresses in Tomato. International Journal of Molecular Sciences, 2021, 22, 1387.	4.1	9
6	Transcriptomic insights into the heat stress response of Dunaliella bardawil. Enzyme and Microbial Technology, 2020, 132, 109436.	3.2	33
7	The tomato 2-oxoglutarate-dependent dioxygenase gene SIF3HL is critical for chilling stress tolerance. Horticulture Research, 2019, 6, 45.	6. 3	45
8	The <scp>bZip</scp> transcription factor <i>HY5</i> mediates <scp><i>CRY1a</i></scp> â€induced anthocyanin biosynthesis in tomato. Plant, Cell and Environment, 2018, 41, 1762-1775.	5.7	138
9	An atypical R2R3 <scp>MYB</scp> transcription factor increases cold hardiness by <scp>CBF</scp> â€dependent and <scp>CBF</scp> â€independent pathways in apple. New Phytologist, 2018, 2018, 201-218.	7.3	217
10	Spliceosomal protein U1A is involved in alternative splicing and salt stress tolerance in Arabidopsis thaliana. Nucleic Acids Research, 2018, 46, 1777-1792.	14.5	57
11	Carotenoids biosynthesis and cleavage related genes from bacteria to plants. Critical Reviews in Food Science and Nutrition, 2018, 58, 2314-2333.	10.3	74
12	An Arabidopsis PWI and RRM motif-containing protein is critical for pre-mRNA splicing and ABA responses. Nature Communications, 2015, 6, 8139.	12.8	105
13	The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis Â. Plant Physiology, 2014, 167, 137-152.	4.8	41
14	The Protein Phosphatase RCF2 and Its Interacting Partner NACO19 Are Critical for Heat Stressâ€"Responsive Gene Regulation and Thermotolerance in <i>Arabidopsis</i> . Plant Cell, 2014, 26, 438-453.	6.6	133
15	A DEAD Box RNA Helicase Is Critical for Pre-mRNA Splicing, Cold-Responsive Gene Regulation, and Cold Tolerance in <i>Arabidopsis </i> Â Â. Plant Cell, 2013, 25, 342-356.	6.6	141
16	A KH Domain-Containing Putative RNA-Binding Protein Is Critical for Heat Stress-Responsive Gene Regulation and Thermotolerance in Arabidopsis. Molecular Plant, 2013, 6, 386-395.	8.3	54
17	Heat stress induction of <i>mi<scp>R</scp>398</i> triggers a regulatory loop that is critical for thermotolerance in <scp>A</scp> rabidopsis. Plant Journal, 2013, 74, 840-851.	5.7	330
18	A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis. Plant Journal, 2010, 63, no-no.	5.7	113

#	ARTICLE	IF	CITATIONS
19	C-terminal domain phosphatase-like family members (AtCPLs) differentially regulate Arabidopsis thaliana abiotic stress signaling, growth, and development. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10893-10898.	7.1	146