Fan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8740301/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regularized Dual-Channel Algorithm for the Retrieval of Soil Moisture and Vegetation Optical Depth From SMAP Measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 102-114.	4.9	13
2	Validation of Soil Moisture Data Products From the NASA SMAP Mission. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 364-392.	4.9	62
3	Implementation and Analysis of the Dual-Channel Algorithm for the Retrieval of Soil Moisture and Vegetation Optical Depth for SMAP. , 2021, , .		0
4	Improved SMAP Dual-Channel Algorithm for the Retrieval of Soil Moisture. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 3894-3905.	6.3	62
5	Uncertainty of Reference Pixel Soil Moisture Averages Sampled at SMAP Core Validation Sites. Journal of Hydrometeorology, 2019, 20, 1553-1569.	1.9	24
6	Diagnosing Bias in Modeled Soil Moisture/Runoff Coefficient Correlation Using the SMAP Level 4 Soil Moisture Product. Water Resources Research, 2019, 55, 7010-7026.	4.2	25
7	The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product. Remote Sensing of Environment, 2019, 233, 111380.	11.0	175
8	Improving Brightness Temperature Measurements Near Coastal Areas for SMAP. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 4578-4588.	4.9	9
9	The SMAP mission combined active-passive soil moisture product at 9†km and 3†km spatial resolutions. Remote Sensing of Environment, 2018, 211, 204-217.	11.0	59
10	Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sensing of Environment, 2018, 204, 931-941.	11.0	297
11	Global-scale evaluation of SMAP, SMOS and ASCAT soil moisture products using triple collocation. Remote Sensing of Environment, 2018, 214, 1-13.	11.0	157
12	The Efficiency of Data Assimilation. Water Resources Research, 2018, 54, 6374-6392.	4.2	27
13	Exploiting Soil Moisture, Precipitation, and Streamflow Observations to Evaluate Soil Moisture/Runoff Coupling in Land Surface Models. Geophysical Research Letters, 2018, 45, 4869-4878.	4.0	56
14	Application of Triple Collocation in Ground-Based Validation of Soil Moisture Active/Passive (SMAP) Level 2 Data Products. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 489-502.	4.9	115
15	L band microwave remote sensing and land data assimilation improve the representation of prestorm soil moisture conditions for hydrologic forecasting. Geophysical Research Letters, 2017, 44, 5495-5503.	4.0	76
16	Assessment of the SMAP Passive Soil Moisture Product. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 4994-5007.	6.3	460
17	Dual Forcing and State Correction via Soil Moisture Assimilation for Improved Rainfall–Runoff Modeling. Journal of Hydrometeorology, 2014, 15, 1832-1848.	1.9	55
18	Improving hydrologic predictions of a catchment model via assimilation of surface soil moisture. Advances in Water Resources, 2011, 34, 526-536.	3.8	157

Fan Chen

#	Article	IF	CITATIONS
19	A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. Journal of Geophysical Research, 1999, 104, 19569-19585.	3.3	479
20	Application of the vineyard data assimilation (VIDA) system to vineyard root-zone soil moisture monitoring in the California Central Valley. Irrigation Science, 0, , 1.	2.8	6
21	Evaluating different metrics from the thermal-based two-source energy balance model for monitoring grapevine water stress. Irrigation Science, 0, , .	2.8	4