

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8740233/publications.pdf Version: 2024-02-01

****\/F1 X116

#	Article	IF	CITATIONS
1	Radiation estimation and crop growth trajectory reconstruction by novel algorithms improve MOD16 evapotranspiration predictability for global multi-site paddy rice ecosystems. Journal of Hydrology, 2022, 612, 128204.	2.3	2
2	Inter-annual variations of seed cotton yield in relation to soil organic carbon and harvest index in reclaimed desertified land. Field Crops Research, 2021, 272, 108267.	2.3	6
3	Contribution of Biophysical Factors to Regional Variations of Evapotranspiration and Seasonal Cooling Effects in Paddy Rice in South Korea. Remote Sensing, 2021, 13, 3992.	1.8	5
4	Enhanced efficiency nitrogen fertilizers were not effective in reducing N2O emissions from a drip-irrigated cotton field in arid region of Northwestern China. Science of the Total Environment, 2020, 748, 141543.	3.9	23
5	High biomass production with abundant leaf litterfall is critical to ameliorating soil quality and productivity in reclaimed sandy desertification land. Journal of Environmental Management, 2020, 263, 110373.	3.8	15
6	Application of an unmanned aerial system for monitoring paddy productivity using the GRAMI-rice model. International Journal of Remote Sensing, 2018, 39, 2441-2462.	1.3	19
7	Quantification of CO2 fluxes in paddy rice based on the characterization and simulation of CO2 assimilation approaches. Agricultural and Forest Meteorology, 2018, 249, 348-366.	1.9	14
8	Quantifying differences in water and carbon cycling between paddy and rainfed rice (Oryza sativa L.) by flux partitioning. PLoS ONE, 2018, 13, e0195238.	1.1	11
9	A spatially hierarchical integration of close-range remote sensing, leaf structure and physiology assists in diagnosing spatiotemporal dimensions of field-scale ecosystem photosynthetic productivity. Agricultural and Forest Meteorology, 2017, 247, 503-519.	1.9	11
10	Moderate shade environment facilitates establishment of desert phreatophytic species Alhagi sparsifolia seedlings by enlarge fine root biomass. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	5
11	Supplement understanding of the relative importance of biophysical factors in determination of photosynthetic capacity and photosynthetic productivity in rice ecosystems. Agricultural and Forest Meteorology, 2017, 232, 550-565.	1.9	12
12	Linking canopy reflectance to crop structure and photosynthesis to capture and interpret spatiotemporal dimensions of per-field photosynthetic productivity. Biogeosciences, 2017, 14, 1315-1332.	1.3	8
13	Nutritional and developmental influences on components of rice crop light use efficiency. Agricultural and Forest Meteorology, 2016, 223, 1-16.	1.9	25
14	Conditional variations in temperature response of photosynthesis, mesophyll and stomatal control of water use in rice and winter wheat. Field Crops Research, 2016, 199, 77-88.	2.3	10
15	Canopy scale CO2 exchange and productivity of transplanted paddy and direct seeded rainfed rice production systems in S. Korea. Agricultural and Forest Meteorology, 2016, 228-229, 229-238.	1.9	23
16	Soil water availability and capacity of nitrogen accumulation influence variations of intrinsic water use efficiency in rice. Journal of Plant Physiology, 2016, 193, 26-36.	1.6	7
17	Carbon dioxide exchange and its regulation in the main agro-ecosystems of Haean catchment in South Korea. Agriculture, Ecosystems and Environment, 2015, 199, 132-145.	2.5	20