Stefani Spranger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8740072/publications.pdf

Version: 2024-02-01

49 papers

12,565 citations

32 h-index 286692 43 g-index

53 all docs

53 docs citations

53 times ranked

20763 citing authors

#	Article	lF	Citations
1	Type I interferon activates MHC class I-dressed CD11b+ conventional dendritic cells to promote protective anti-tumor CD8+ TÂcell immunity. Immunity, 2022, 55, 308-323.e9.	6.6	126
2	Deciphering the immunopeptidome in vivo reveals new tumour antigens. Nature, 2022, 607, 149-155.	13.7	38
3	Dendritic cell-mediated cross presentation of tumor-derived peptides is biased against plasma membrane proteins., 2022, 10, e004159.		5
4	Frontiers in cancer immunotherapyâ€"a symposium report. Annals of the New York Academy of Sciences, 2021, 1489, 30-47.	1.8	39
5	Direct and Indirect Regulators of Epithelial–Mesenchymal Transition–Mediated Immunosuppression in Breast Carcinomas. Cancer Discovery, 2021, 11, 1286-1305.	7.7	76
6	Increased demand for NAD+ relative to ATP drives aerobic glycolysis. Molecular Cell, 2021, 81, 691-707.e6.	4.5	232
7	Immunogenomic determinants of tumor microenvironment correlate with superior survival in high-risk neuroblastoma., 2021, 9, e002417.		21
8	Lack of CD8 ⁺ T cell effector differentiation during priming mediates checkpoint blockade resistance in non–small cell lung cancer. Science Immunology, 2021, 6, eabi8800.	5.6	58
9	Reprogramming NK cells and macrophages via combined antibody and cytokine therapy primes tumors for elimination by checkpoint blockade. Cell Reports, 2021, 37, 110021.	2.9	21
10	Impact of anatomic site on antigen-presenting cells in cancer. , 2020, 8, e001204.		10
11	Formation of Human Neuroblastoma in Mouse-Human Neural Crest Chimeras. Cell Stem Cell, 2020, 26, 579-592.e6.	5. 2	32
12	CD36 — the Achilles' heel of Treg cells. Nature Immunology, 2020, 21, 251-253.	7.0	6
13	Modulation of the immune microenvironment by tumor-intrinsic oncogenic signaling. Journal of Cell Biology, 2020, 219, .	2.3	42
14	Tissue Site and the Cancer Immunity Cycle. Trends in Cancer, 2019, 5, 593-603.	3.8	37
15	Anchoring of intratumorally administered cytokines to collagen safely potentiates systemic cancer immunotherapy. Science Translational Medicine, 2019, 11, .	5.8	141
16	Secondary resistance to immunotherapy associated with \hat{l}^2 -catenin pathway activation or PTEN loss in metastatic melanoma., 2019, 7, 295.		98
17	WNT Signaling in Cancer Immunosurveillance. Trends in Cell Biology, 2019, 29, 44-65.	3.6	168
18	WNT/ \hat{l}^2 -catenin Pathway Activation Correlates with Immune Exclusion across Human Cancers. Clinical Cancer Research, 2019, 25, 3074-3083.	3.2	435

#	Article	IF	Citations
19	Impact of oncogenic pathways on evasion of antitumour immune responses. Nature Reviews Cancer, 2018, 18, 139-147.	12.8	506
20	Intratumoral CD8+ T-cell Apoptosis Is a Major Component of T-cell Dysfunction and Impedes Antitumor Immunity. Cancer Immunology Research, 2018, 6, 14-24.	1.6	129
21	Mechanisms of Tumor Cell–Intrinsic Immune Evasion. Annual Review of Cancer Biology, 2018, 2, 213-228.	2.3	65
22	A team effort: natural killer cells on the first leg of the tumor immunity relay race., 2018, 6, 67.		20
23	A Tumor Cell-Intrinsic Yin-Yang Determining Immune Evasion. Immunity, 2018, 49, 11-13.	6.6	12
24	Tumor-Residing Batf3 Dendritic Cells Are Required for Effector T Cell Trafficking and Adoptive T Cell Therapy. Cancer Cell, 2017, 31, 711-723.e4.	7.7	1,011
25	Innate immune signaling and regulation in cancer immunotherapy. Cell Research, 2017, 27, 96-108.	5.7	291
26	The non-T-cell-inflamed tumor microenvironment: contributing factors and therapeutic solutions. Emerging Topics in Life Sciences, 2017, 1, 447-456.	1.1	2
27	Molecular Drivers of the Non–T-cell-Inflamed Tumor Microenvironment in Urothelial Bladder Cancer. Cancer Immunology Research, 2016, 4, 563-568.	1.6	293
28	Tumor Heterogeneity and Tumor Immunity: A Chicken-and-Egg Problem. Trends in Immunology, 2016, 37, 349-351.	2.9	15
29	MYC â€" a thorn in the side of cancer immunity. Cell Research, 2016, 26, 639-640.	5.7	7
30	Density of immunogenic antigens does not explain the presence or absence of the T-cell–inflamed tumor microenvironment in melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7759-E7768.	3.3	328
31	Loss of PTEN Promotes Resistance to T Cell–Mediated Immunotherapy. Cancer Discovery, 2016, 6, 202-216.	7.7	1,158
32	Mechanisms of tumor escape in the context of the T-cell-inflamed and the non-T-cell-inflamed tumor microenvironment. International Immunology, 2016, 28, 383-391.	1.8	223
33	Cutting Edge: Engineering Active IKK \hat{l}^2 in T Cells Drives Tumor Rejection. Journal of Immunology, 2016, 196, 2933-2938.	0.4	18
34	Tumor and Host Factors Controlling Antitumor Immunity and Efficacy of Cancer Immunotherapy. Advances in Immunology, 2016, 130, 75-93.	1.1	74
35	Tumor-intrinsic oncogene pathways mediating immune avoidance. Oncolmmunology, 2016, 5, e1086862.	2.1	120
36	Lymphatic vessels regulate immune microenvironments in human and murine melanoma. Journal of Clinical Investigation, 2016, 126, 3389-3402.	3.9	157

#	Article	IF	CITATIONS
37	STING-Dependent Cytosolic DNA Sensing Mediates Innate Immune Recognition of Immunogenic Tumors. Immunity, 2015, 42, 199.	6.6	5
38	Melanoma-intrinsic \hat{l}^2 -catenin signalling prevents anti-tumour immunity. Nature, 2015, 523, 231-235.	13.7	2,130
39	Molecular Pathways: Targeting IDO1 and Other Tryptophan Dioxygenases for Cancer Immunotherapy. Clinical Cancer Research, 2015, 21, 5427-5433.	3.2	254
40	STING-Dependent Cytosolic DNA Sensing Mediates Innate Immune Recognition of Immunogenic Tumors. Immunity, 2014, 41, 830-842.	6.6	1,325
41	Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8+ T cells directly within the tumor microenvironment., 2014, 2, 3.		460
42	Up-Regulation of PD-L1, IDO, and T _{regs} in the Melanoma Tumor Microenvironment Is Driven by CD8 ⁺ T Cells. Science Translational Medicine, 2013, 5, 200ra116.	5.8	1,447
43	Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Current Opinion in Immunology, 2013, 25, 268-276.	2.4	352
44	TCR-transgenic lymphocytes specific for HMMR/Rhamm limit tumor outgrowth in vivo. Blood, 2012, 119, 3440-3449.	0.6	55
45	Pharmacologic Inhibition of MALT1 Protease by Phenothiazines as a Therapeutic Approach for the Treatment of Aggressive ABC-DLBCL. Cancer Cell, 2012, 22, 825-837.	7.7	216
46	The CD6 Scavenger Receptor Is Differentially Expressed on a CD56 ^{dim} Natural Killer Cell Subpopulation and Contributes to Natural Killer-Derived Cytokine and Chemokine Secretion. Journal of Innate Immunity, 2011, 3, 420-434.	1.8	44
47	Generation of Th1-Polarizing Dendritic Cells Using the TLR7/8 Agonist CL075. Journal of Immunology, 2010, 185, 738-747.	0.4	70
48	MHC-restricted fratricide of human lymphocytes expressing survivin-specific transgenic T cell receptors. Journal of Clinical Investigation, 2010, 120, 3869-3877.	3.9	86
49	Schistosoma mansoni P-glycoprotein levels increase in response to praziquantel exposure and correlate with reduced praziquantel susceptibility. Molecular and Biochemical Parasitology, 2009, 167, 54-59.	0.5	77