Mike-Andrew Westhoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8739701/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methodological Approaches for Assessing Metabolomic Changes in. Methods in Molecular Biology, 2022, 2445, 305-328.	0.9	1
2	Bcl-XL but Not Bcl-2 Is a Potential Target in Medulloblastoma Therapy. Pharmaceuticals, 2022, 15, 91.	3.8	5
3	Diisothiocyanate-Derived Mercapturic Acids Are a Promising Partner for Combination Therapies in Glioblastoma. ACS Omega, 2022, 7, 5929-5936.	3.5	0
4	Induction of Synthetic Lethality by Activation of Mitochondrial ClpP and Inhibition of HDAC1/2 in Glioblastoma. Clinical Cancer Research, 2022, 28, 1881-1895.	7.0	17
5	Current state and future perspective of drug repurposing in malignant glioma. Seminars in Cancer Biology, 2021, 68, 92-104.	9.6	35
6	What Animal Cancers teach us about Human Biology. Theranostics, 2021, 11, 6682-6702.	10.0	5
7	Inhibition of Intercellular Cytosolic Traffic via Gap Junctions Reinforces Lomustine-Induced Toxicity in Glioblastoma Independent of MGMT Promoter Methylation Status. Pharmaceuticals, 2021, 14, 195.	3.8	7
8	Meclofenamate causes loss of cellular tethering and decoupling of functional networks in glioblastoma. Neuro-Oncology, 2021, 23, 1885-1897.	1.2	23
9	A phase Ib/IIa trial of 9 repurposed drugs combined with temozolomide for the treatment of recurrent glioblastoma: CUSP9v3. Neuro-Oncology Advances, 2021, 3, vdab075.	0.7	26
10	Targeting super-enhancers reprograms glioblastoma central carbon metabolism. Oncotarget, 2021, 12, 1309-1313.	1.8	4
11	Photodynamic Therapy Combined with Bcl-2/Bcl-xL Inhibition Increases the Noxa/Mcl-1 Ratio Independent of Usp9X and Synergistically Enhances Apoptosis in Glioblastoma. Cancers, 2021, 13, 4123.	3.7	9
12	Critical View of Novel Treatment Strategies for Glioblastoma: Failure and Success of Resistance Mechanisms by Glioblastoma Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 695325.	3.7	27
13	Aurora kinase A inhibition reverses the Warburg effect and elicits unique metabolic vulnerabilities in glioblastoma. Nature Communications, 2021, 12, 5203.	12.8	38
14	EXTH-68. DUAL METABOLIC REPROGRAMMING BY ONC201/TIC10 AND 2-DEOXYGLUCOSE HAS A STRONG ANTIPROLIFERATIVE EFFECT ON MEDULLOBLASTOMA CELLS. Neuro-Oncology, 2021, 23, vi178-vi179.	1.2	0
15	ONC201/TIC10 Is Empowered by 2-Deoxyglucose and Causes Metabolic Reprogramming in Medulloblastoma Cells in Vitro Independent of C-Myc Expression. Frontiers in Cell and Developmental Biology, 2021, 9, 734699.	3.7	2
16	TAMI-17. INDUCTION OF SYNTHETIC LETHALITY BY ACTIVATION OF MITOCHONDRIAL CLPP AND INHIBITION OF HDAC1/2 IN GLIOBLASTOMA. Neuro-Oncology, 2021, 23, vi201-vi201.	1.2	0
17	CTNI-04. RECURRENT GLIOBLASTOMA LONG-TERM SURVIVORS TREATED WITH CUSP9v3. Neuro-Oncology, 2021, 23, vi59-vi59.	1.2	1
18	MET Inhibition Elicits PGC1α-Dependent Metabolic Reprogramming in Glioblastoma. Cancer Research, 2020, 80, 30-43.	0.9	35

#	Article	IF	CITATIONS
19	Inhibition of HDAC1/2 Along with TRAP1 Causes Synthetic Lethality in Glioblastoma Model Systems. Cells, 2020, 9, 1661.	4.1	20
20	Epigenetic Targeting of Mcl-1 Is Synthetically Lethal with Bcl-xL/Bcl-2 Inhibition in Model Systems of Glioblastoma. Cancers, 2020, 12, 2137.	3.7	18
21	The limitations of targeting MEK signalling in Glioblastoma therapy. Scientific Reports, 2020, 10, 7401.	3.3	17
22	Considering the Experimental Use of Temozolomide in Glioblastoma Research. Biomedicines, 2020, 8, 151.	3.2	25
23	Dual metabolic reprogramming by ONC201/TIC10 and 2-Deoxyglucose induces energy depletion and synergistic anti-cancer activity in glioblastoma. British Journal of Cancer, 2020, 122, 1146-1157.	6.4	36
24	Comment in Response to "Temozolomide in Glioblastoma Therapy: Role of Apoptosis, Senescence and Autophagy etc. by B. Kaina― Biomedicines, 2020, 8, 93.	3.2	5
25	HDAC inhibitors elicit metabolic reprogramming by targeting super-enhancers in glioblastoma models. Journal of Clinical Investigation, 2020, 130, 3699-3716.	8.2	104
26	TAMI-33. AURKA INHIBITION REPROGRAMS METABOLISM AND IS SYNTHETICALLY LETHAL WITH FATTY ACID OXIDATION INHIBITION IN GLIOBLASTOMA. Neuro-Oncology, 2020, 22, ii220-ii220.	1.2	0
27	Activation of <scp>LXR</scp> β inhibits tumor respiration and is synthetically lethal with Bcl― <scp>xL</scp> inhibition. EMBO Molecular Medicine, 2019, 11, e10769.	6.9	32
28	Temozolomide and Other Alkylating Agents in Glioblastoma Therapy. Biomedicines, 2019, 7, 69.	3.2	136
29	Bclâ€2/Bclâ€xL inhibition predominantly synergistically enhances the antiâ€neoplastic activity of a lowâ€dose CUSP9 repurposed drug regime against glioblastoma. British Journal of Pharmacology, 2019, 176, 3681-3694.	5.4	25
30	Inhibition of Gap Junctions Sensitizes Primary Glioblastoma Cells for Temozolomide. Cancers, 2019, 11, 858.	3.7	20
31	Combined inhibition of RAC1 and Bcl-2/Bcl-xL synergistically induces glioblastoma cell death through down-regulation of the Usp9X/Mcl-1 axis. Cellular Oncology (Dordrecht), 2019, 42, 287-301.	4.4	13
32	CBMT-35. METABOLIC REWIRING BY ONC201/TIC10 AND 2-DEOXYGLUCOSE HAS SYNERGISTIC ANTI-GLIOBLASTOMA ACTIVITY. Neuro-Oncology, 2019, 21, vi40-vi41.	1.2	0
33	Compare and contrast: pediatric cancer versus adult malignancies. Cancer and Metastasis Reviews, 2019, 38, 673-682.	5.9	52
34	FBXW7 mutations reduce binding of NOTCH1, leading to cleaved NOTCH1 accumulation and target gene activation in CLL. Blood, 2019, 133, 830-839.	1.4	56
35	Blocking distinct interactions between Glioblastoma cells and their tissue microenvironment: A novel multi-targeted therapeutic approach. Scientific Reports, 2018, 8, 5527.	3.3	15
36	Cell death-based treatment of childhood cancer. Cell Death and Disease, 2018, 9, 116.	6.3	12

#	Article	IF	CITATIONS
37	Precision medicine in pediatric oncology. Molecular and Cellular Pediatrics, 2018, 5, 6.	1.8	37
38	EXTH-55. CONCOMITANT INHIBITION OF RAC1 AND Bcl-2/Bcl-xL INTERFERES WITH THE Mcl-1/Usp9X AXIS AND YIELDS SYNERGISTIC ANTI-GLIOMA ACTIVITY. Neuro-Oncology, 2018, 20, vi96-vi97.	1.2	0
39	EXTH-64. IMIPRIDONES CAUSE METABOLIC REPROGRAMMING AND ELICIT UNIQUE VULNERABILITIES IN PRECLINICAL MODEL SYSTEMS OF GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi98-vi99.	1.2	0
40	Viability of glioblastoma stem cells is effectively reduced by diisothiocyanate‑derived mercapturic acids. Oncology Letters, 2018, 16, 6181-6187.	1.8	2
41	Dual Inhibition of Bcl-2/Bcl-xL and XPO1 is synthetically lethal in glioblastoma model systems. Scientific Reports, 2018, 8, 15383.	3.3	11
42	Inhibition of PI3K signalling increases the efficiency of radiotherapy in glioblastoma cells. International Journal of Oncology, 2018, 53, 1881-1896.	3.3	11
43	Combined HDAC and Bromodomain Protein Inhibition Reprograms Tumor Cell Metabolism and Elicits Synthetic Lethality in Glioblastoma. Clinical Cancer Research, 2018, 24, 3941-3954.	7.0	35
44	Metabolic Reprogramming by Dual AKT/ERK Inhibition through Imipridones Elicits Unique Vulnerabilities in Glioblastoma. Clinical Cancer Research, 2018, 24, 5392-5406.	7.0	67
45	Inhibition of Bcl-2/Bcl-xL and c-MET causes synthetic lethality in model systems of glioblastoma. Scientific Reports, 2018, 8, 7373.	3.3	6
46	NOTCH1 Signaling Is Activated in CLL By Mutations of FBXW7 and Low Expression of USP28 at 11q23. Blood, 2018, 132, 946-946.	1.4	1
47	Radiation and Brain Tumors: An Overview. Critical Reviews in Oncogenesis, 2018, 23, 119-138.	0.4	20
48	Simultaneous Interference with HER1/EGFR and RAC1 Signaling Drives Cytostasis and Suppression of Survivin in Human Glioma Cells in Vitro. Neurochemical Research, 2017, 42, 1543-1554.	3.3	10
49	Cancer stem cells: The potential role of autophagy, proteolysis, and cathepsins in glioblastoma stem cells. Tumor Biology, 2017, 39, 101042831769222.	1.8	36
50	Anti-glioma Activity of Dapsone and Its Enhancement by Synthetic Chemical Modification. Neurochemical Research, 2017, 42, 3382-3389.	3.3	29
51	Targeting intrinsic apoptosis and other forms of cell death by BH3-mimetics in glioblastoma. Expert Opinion on Drug Discovery, 2017, 12, 1031-1040.	5.0	38
52	The effects of PI3K-mediated signalling on glioblastoma cell behaviour. Oncogenesis, 2017, 6, 398.	4.9	45
53	Cerebral Microstructural Alterations after Radiation Therapy in High-Grade Glioma: A Diffusion Tensor Imaging-Based Study. Frontiers in Neurology, 2017, 8, 286.	2.4	15
54	Mitochondrial matrix chaperone and c-myc inhibition causes enhanced lethality in glioblastoma. Oncotarget, 2017, 8, 37140-37153.	1.8	24

#	Article	IF	CITATIONS
55	BH3-mimetics and BET-inhibitors elicit enhanced lethality in malignant glioma. Oncotarget, 2017, 8, 29558-29573.	1.8	36
56	Immune phenotypes predict survival in patients with glioblastoma multiforme. Journal of Hematology and Oncology, 2016, 9, 77.	17.0	56
57	Inhibition of deubiquitinases primes glioblastoma cells to apoptosis <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2016, 7, 12791-12805.	1.8	35
58	A paired comparison between glioblastoma "stem cells―and differentiated cells. International Journal of Cancer, 2016, 138, 1709-1718.	5.1	42
59	Novel Approaches to Apoptosis-Inducing Therapies. Advances in Experimental Medicine and Biology, 2016, 930, 173-204.	1.6	17
60	Cathepsin G-mediated proteolytic degradation of MHC class I molecules to facilitate immune detection of human glioblastoma cells. Cancer Immunology, Immunotherapy, 2016, 65, 283-291.	4.2	22
61	Cell Death Induction in Cancer Therapy - Past, Present, and Future. Critical Reviews in Oncogenesis, 2016, 21, 253-267.	0.4	22
62	Exogenous cathepsin G upregulates cell surface MHC class I molecules on immune and glioblastoma cells. Oncotarget, 2016, 7, 74602-74611.	1.8	7
63	Metabolic reprogramming of glioblastoma cells by L-asparaginase sensitizes for apoptosis in vitro and in vivo. Oncotarget, 2016, 7, 33512-33528.	1.8	47
64	A potential role of PI3K inhibition in radiotherapy of glioblastoma multiforme. Molecular and Cellular Pediatrics, 2015, 2, A18.	1.8	0
65	TIC10/ONC201 synergizes with Bcl-2/Bcl-xL inhibition in glioblastoma by suppression of Mcl-1 and its binding partners <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2015, 6, 36456-36471.	1.8	57
66	A Potential Role for the Inhibition of PI3K Signaling in Glioblastoma Therapy. PLoS ONE, 2015, 10, e0131670.	2.5	37
67	RIST: A potent new combination therapy for glioblastoma. International Journal of Cancer, 2015, 136, E173-87.	5.1	42
68	Olanzapine inhibits proliferation, migration and anchorage-independent growth in human glioblastoma cell lines and enhances temozolomide's antiproliferative effect. Journal of Neuro-Oncology, 2015, 122, 21-33.	2.9	42
69	Combined inhibition of Bcl-2/Bcl-xL and Usp9X/Bag3 overcomes apoptotic resistance in glioblastoma <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2015, 6, 14507-14521.	1.8	45
70	Cancer therapy: know your enemy?. Molecular and Cellular Pediatrics, 2014, 1, 10.	1.8	4
71	Killing Me Softly—Future Challenges in Apoptosis Research. International Journal of Molecular Sciences, 2014, 15, 3746-3767.	4.1	26
72	ET-26 * COMBINED TREATMENT WITH ABT263 AND GX15-070 YIELDS A SYNERGISTIC ANTIPROLIFERATIVE EFFECT IN GLIOBLASTOMA. Neuro-Oncology, 2014, 16, v85-v85.	1.2	0

#	Article	IF	CITATIONS
73	KIT mutations in primary mediastinal B-cell lymphoma. Blood Cancer Journal, 2014, 4, e241-e241.	6.2	2
74	Phosphoinositide 3-Kinases Upregulate System x _c ^{â^'} <i>via</i> Eukaryotic Initiation Factor 2α and Activating Transcription Factor 4 – A Pathway Active in Glioblastomas and Epilepsy. Antioxidants and Redox Signaling, 2014, 20, 2907-2922.	5.4	58
75	A critical evaluation of PI3K inhibition in Glioblastoma and Neuroblastoma therapy. Molecular and Cellular Therapies, 2014, 2, 32.	0.2	45
76	Transitory dasatinib-resistant states in KITmut t(8;21) acute myeloid leukemia cells correlate with altered KIT expression. Experimental Hematology, 2014, 42, 90-100.	0.4	11
77	PARP Inhibition Restores Extrinsic Apoptotic Sensitivity in Glioblastoma. PLoS ONE, 2014, 9, e114583.	2.5	38
78	Darwinian Principles in Cancer Therapy. European Oncology and Haematology, 2014, 10, 116.	0.0	2
79	Artesunate Enhances the Antiproliferative Effect of Temozolomide on U87MG and A172 Glioblastoma Cell Lines. Anti-Cancer Agents in Medicinal Chemistry, 2014, 14, 313-318.	1.7	35
80	Antiviral Vaccines License T Cell Responses by Suppressing Granzyme B Levels in Human Plasmacytoid Dendritic Cells. Journal of Immunology, 2013, 191, 1144-1153.	0.8	11
81	Combined Inhibition of HER1/EGFR and RAC1 Results in a Synergistic Antiproliferative Effect on Established and Primary Cultured Human Glioblastoma Cells. Molecular Cancer Therapeutics, 2013, 12, 1783-1795.	4.1	50
82	Inhibition of NF-Î $^{ m P}$ B Signaling Ablates the Invasive Phenotype of Glioblastoma. Molecular Cancer Research, 2013, 11, 1611-1623.	3.4	66
83	TRAIL (TNF-related apoptosis-inducing ligand) regulates adipocyte metabolism by caspase-mediated cleavage of PPARgamma. Cell Death and Disease, 2013, 4, e474-e474.	6.3	40
84	Sequential Dosing in Chemosensitization: Targeting the PI3K/Akt/mTOR Pathway in Neuroblastoma. PLoS ONE, 2013, 8, e83128.	2.5	42
85	Targeting the Epidermal Growth Factor Receptor in Glioblastoma Treatment. Current Signal Transduction Therapy, 2012, 7, 3-13.	0.5	0
86	Erlotinib in Glioblastoma - Lost in Translation?. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 748-755.	1.7	18
87	The pyridinylfuranopyrimidine inhibitor, PI-103, chemosensitizes glioblastoma cells for apoptosis by inhibiting DNA repair. Oncogene, 2009, 28, 3586-3596.	5.9	74
88	Adhesion-mediated apoptosis resistance in cancer. Drug Resistance Updates, 2009, 12, 127-136.	14.4	47
89	Identification of a novel switch in the dominant forms of cell adhesion-mediated drug resistance in glioblastoma cells. Oncogene, 2008, 27, 5169-5181.	5.9	54
90	4-hydroperoxy-cyclophosphamide mediates caspase-independent T-cell apoptosis involving oxidative stress-induced nuclear relocation of mitochondrial apoptogenic factors AIF and EndoG. Cell Death and Differentiation, 2008, 15, 332-343.	11.2	37

MIKE-ANDREW WESTHOFF

#	Article	IF	CITATIONS
91	Strange inheritance. New Scientist, 2008, 199, 23.	0.0	0
92	Phosphatidylinositol 3-Kinase Inhibition Broadly Sensitizes Glioblastoma Cells to Death Receptor– and Drug-Induced Apoptosis. Cancer Research, 2008, 68, 6271-6280.	0.9	137
93	NF-κB-independent sensitization of glioblastoma cells for TRAIL-induced apoptosis by proteasome inhibition. Oncogene, 2007, 26, 571-582.	5.9	39
94	Newly identified c-KIT receptor tyrosine kinase ITD in childhood AML induces ligand-independent growth and is responsive to a synergistic effect of imatinib and rapamycin. Blood, 2006, 108, 3504-3513.	1.4	70
95	Betulinic acid as new activator of NF- $\hat{I}^{e}B$: molecular mechanisms and implications for cancer therapy. Oncogene, 2005, 24, 6945-6956.	5.9	131
96	Sensitization for γ-Irradiation–Induced Apoptosis by Second Mitochondria-Derived Activator of Caspase. Cancer Research, 2005, 65, 10502-10513.	0.9	64
97	Src-Mediated Phosphorylation of Focal Adhesion Kinase Couples Actin and Adhesion Dynamics to Survival Signaling. Molecular and Cellular Biology, 2004, 24, 8113-8133.	2.3	216
98	A Novel Role for FAK as a Protease-Targeting Adaptor Protein. Current Biology, 2003, 13, 1442-1450.	3.9	177
99	v-Src-Induced Modulation of the Calpain-Calpastatin Proteolytic System Regulates Transformation. Molecular and Cellular Biology, 2002, 22, 257-269.	2.3	107
100	Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signalling. Nature Cell Biology, 2002, 4, 632-638.	10.3	345
101	Activation of Lxrr Causes Metabolic Reprogramming and Sensitizes Solid Tumors to Bcl-xL Inhibition Mediated Apoptosis. SSRN Electronic Journal, 0, , .	0.4	0