Teresa M V D Pinho E Melo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8739602/publications.pdf

Version: 2024-02-01

184 papers

3,610 citations

28 h-index 214800 47 g-index

244 all docs 244 docs citations

times ranked

244

3169 citing authors

#	Article	IF	CITATIONS
1	Recent Advances on the Synthesis and Reactivity of Isoxazoles. Current Organic Chemistry, 2005, 9, 925-958.	1.6	270
2	Conjugated Azomethine Ylides. European Journal of Organic Chemistry, 2006, 2006, 2873-2888.	2.4	135
3	Aziridines in Formal [3+2] Cycloadditions: Synthesis of Fiveâ€Membered Heterocycles. European Journal of Organic Chemistry, 2012, 2012, 6479-6501.	2.4	104
4	Recent Advances in the Chemistry of Conjugated Nitrosoalkenes and Azoalkenes. Chemical Reviews, 2018, 118, 11324-11352.	47.7	88
5	Microwaveâ€Assisted 1,3â€Dipolar Cycloaddition: an Ecoâ€Friendly Approach to Fiveâ€Membered Heterocycles. European Journal of Organic Chemistry, 2009, 2009, 5287-5307.	2.4	80
6	Immobilized Catalysts for Hydroformylation Reactions: A Versatile Tool for Aldehyde Synthesis. European Journal of Organic Chemistry, 2012, 2012, 6309-6320.	2.4	74
7	4â€Isoxazolines: Scaffolds for Organic Synthesis. European Journal of Organic Chemistry, 2010, 2010, 3363-3376.	2.4	70
8	The Pyrolysis of Isoxazole Revisited: A New Primary Product and the Pivotal Role of the Vinylnitrene. A Low-Temperature Matrix Isolation and Computational Study. Journal of the American Chemical Society, 2011, 133, 18911-18923.	13.7	59
9	Exploiting 2-Halo-2H-Azirine Chemistry. Current Organic Synthesis, 2004, 1, 275-292.	1.3	55
10	Synthesis of 2-halo-2H-azirines. Tetrahedron, 2001, 57, 6203-6208.	1.9	53
11	Allenes as Dipolarophiles and 1,3-Dipole Precursors: Synthesis of Carbocyclic and Heterocyclic Compounds. Current Organic Chemistry, 2009, 13, 1406-1431.	1.6	52
12	Chiral 6,7-bis(hydroxymethyl)-1H,3H-pyrrolo[1,2-c]thiazoles with anti-breast cancer properties. European Journal of Medicinal Chemistry, 2013, 60, 254-262.	5.5	52
13	Synthesis of Chiral Pyrrolo[1,2-c]thiazoles via Intramolecular Dipolar Cycloaddition of Mýnchnones: An Interesting Rearrangement to Pyrrolo[1,2-c]thiazines. Journal of Organic Chemistry, 2002, 67, 4045-4054.	3.2	49
14	Reactivity of 2-Halo-2H-azirines. 1. Reactions with Nucleophiles. Journal of Organic Chemistry, 2002, 67, 66-71.	3.2	46
15	Synthesis of isoquinolines by cycloaddition of arynes to 1,2,4-triazines. Tetrahedron, 1992, 48, 6821-6826.	1.9	45
16	Novel approach to bis(indolyl)methanes: De novo synthesis of 1-hydroxyiminomethyl derivatives with anti-cancer properties. European Journal of Medicinal Chemistry, 2015, 93, 9-15.	5.5	45
17	N-Vinyl- and C-Vinylpyrroles from Azafulvenium Methides. Flash Vacuum Pyrolysis Route to 5-Oxo-5H-pyrrolizines and 1-Azabenzo [f] azulenes. Journal of Organic Chemistry, 2005, 70, 6629-6638.	3.2	42
18	Platinum(II) Ring-Fused Chlorins as Near-Infrared Emitting Oxygen Sensors and Photodynamic Agents. ACS Medicinal Chemistry Letters, 2017, 8, 310-315.	2.8	42

#	Article	IF	Citations
19	1,3-Dipolar cycloaddition of azomethine ylides generated from aziridines in supercritical carbon dioxide. Tetrahedron Letters, 2006, 47, 5475-5479.	1.4	41
20	UV-Laser Photochemistry of Isoxazole Isolated in a Low-Temperature Matrix. Journal of Organic Chemistry, 2012, 77, 8723-8732.	3.2	40
21	Reactivity of 2-Halo-2H-azirines. Part II. Thermal Ring Expansion Reactions: Synthesis of 4-Haloisoxazoles. Synthesis, 2002, 2002, 605-608.	2.3	39
22	[4+2] Cycloadditions of 3â€Tetrazolylâ€1,2â€diazaâ€1,3â€butadienes: Synthesis of 3â€Tetrazolylâ€1,4,5,6â€tetrahydropyridazines. European Journal of Organic Chemistry, 2012, 2012, 2152-2160.	2.4	39
23	Recent Developments in the Synthesis of Dipyrromethanes. A Review. Organic Preparations and Procedures International, 2014, 46, 183-213.	1.3	39
24	Hetero-Diels-Alder reactions of novel 3-triazolyl-nitrosoalkenes as an approach to functionalized 1,2,3-triazoles with antibacterial profile. European Journal of Medicinal Chemistry, 2018, 143, 1010-1020.	5.5	36
25	Novel Asymmetric Wittig Reaction: Synthesis of Chiral Allenic Esters. European Journal of Organic Chemistry, 2004, 2004, 4830-4839.	2.4	34
26	Allenes as building blocks in heterocyclic chemistry. Monatshefte Für Chemie, 2011, 142, 681-697.	1.8	34
27	Flow Chemistry: Towards A More Sustainable Heterocyclic Synthesis. European Journal of Organic Chemistry, 2019, 2019, 7188-7217.	2.4	33
28	Synthesis and reactivity of 2-halo-2H-azirines towards nucleophiles. Tetrahedron Letters, 2000, 41, 7217-7220.	1.4	30
29	4-Isoxazolines and pyrroles from allenoates. Tetrahedron, 2010, 66, 6078-6084.	1.9	28
30	Targeting triple-negative breast cancer cells with 6,7-bis(hydroxymethyl)-1H,3H-pyrrolo[1,2-c]thiazoles. European Journal of Medicinal Chemistry, 2014, 79, 273-281.	5.5	28
31	Dielsâ^'Alder Reactions of Acyclic 2-Azadienes:Â A Semiempirical Molecular Orbital Study. Journal of Organic Chemistry, 1998, 63, 5350-5355.	3.2	27
32	A hetero-Diels–Alder approach to functionalized 1H-tetrazoles: synthesis of tetrazolyl-1,2-oxazines, -oximes and 5-(1-aminoalkyl)-1H-tetrazoles. Tetrahedron Letters, 2010, 51, 6756-6759.	1.4	27
33	Diels–Alder reactions of 3-(1H-tetrazol-5-yl)-nitrosoalkenes: synthesis of functionalized 5-(substituted)-1H-tetrazoles. Tetrahedron, 2011, 67, 8902-8909.	1.9	27
34	Chemistry of Diazafulvenium Methides in the Synthesis of Functionalized Pyrazoles. Journal of Organic Chemistry, 2007, 72, 4406-4415.	3.2	26
35	[8Ï€+2Ï€] Cycloaddition of <i>meso</i> â€Tetra―and 5,15â€Diarylporphyrins: Synthesis and Photophysical Characterization of Stable Chlorins and Bacteriochlorins. European Journal of Organic Chemistry, 2011, 2011, 3970-3979.	2.4	26
36	Reactions of Nitrosoalkenes with Dipyrromethanes and Pyrroles: Insight into the Mechanistic Pathway. Journal of Organic Chemistry, 2014, 79, 10456-10465.	3.2	26

#	Article	IF	CITATIONS
37	Reactivity of Dipyrromethanes towards Azoalkenes: Synthesis of Functionalized Dipyrromethanes, Calix[4]pyrroles, and Bilanes. European Journal of Organic Chemistry, 2014, 2014, 7039-7048.	2.4	26
38	Corroles and Hexaphyrins: Synthesis and Application in Cancer Photodynamic Therapy. Molecules, 2020, 25, 3450.	3.8	26
39	Recent Advances in the Synthesis of Spiroâ€Î²â€Lactams and Spiroâ€Î´â€Lactams. Advanced Synthesis and Cataly 2021, 363, 2464-2501.	sis, 4:3	26
40	Reactivity of allenoates toward aziridines: [3+2] and formal [3+2] cycloadditions. Tetrahedron Letters, 2009, 50, 6180-6182.	1.4	25
41	Chiral spiro- \hat{l}^2 -lactams from 6-diazopenicillanates. Tetrahedron, 2012, 68, 3729-3737.	1.9	25
42	Cycloaddition of trifluoromethyl azafulvenium methides: synthesis of new trifluoromethylpyrrole-annulated derivatives. Tetrahedron Letters, 2010, 51, 411-414.	1.4	24
43	Diastereoselective Azaâ€Baylis–Hillman Reactions: Synthesis of Chiral αâ€Allenylamines and 2â€Azetines from Allenic Esters. European Journal of Organic Chemistry, 2010, 2010, 3249-3256.	2.4	24
44	The Neber Approach to 2-(Tetrazol-5-yl)-2 <i>H</i> -Azirines. Journal of Organic Chemistry, 2013, 78, 6983-6991.	3.2	24
45	Synthesis of 2-halo-2H-azirines from phosphorus ylides. Tetrahedron Letters, 1999, 40, 789-792.	1.4	23
46	Synthesis of Chiral Spirocyclopentenylâ€Î²â€lactams through Phosphaneâ€Catalyzed [3+2] Annulation of Allenoates with 6â€Alkylidenepenicillanates. European Journal of Organic Chemistry, 2013, 2013, 3901-3909.	2.4	23
47	Exploring the Chemistry of Furans: Synthesis of Functionalized Bis(furanâ€2â€yl)methanes and 1,6â€Dihydropyridazines. European Journal of Organic Chemistry, 2015, 2015, 6146-6151.	2.4	23
48	Strategies and methodologies for the construction of spiro- \hat{l}^3 -lactams: an update. Organic Chemistry Frontiers, 2021, 8, 3543-3593.	4.5	23
49	Diels-alder reactions of 2-azadienes derived from cysteine methyl ester. Tetrahedron Letters, 1993, 34, 4097-4100.	1.4	22
50	Novel Approach to Chlorins and Bacteriochlorins: [8Ï€+2Ï€] Cycloaddition of Diazafulvenium Methides with Porphyrins. European Journal of Organic Chemistry, 2010, 2010, 6539-6543.	2.4	22
51	Heteroâ€Diels–Alder and Ringâ€Opening Reactions of Furans Applied to the Synthesis of Functionalized Heterocycles. European Journal of Organic Chemistry, 2017, 2017, 4011-4025.	2.4	22
52	Reactivity of azafulvenium methides derived from pyrrolo[1,2-c]thiazole-2,2-dioxides: synthesis of functionalised pyrroles. Tetrahedron Letters, 2004, 45, 3889-3893.	1.4	21
53	Reactivity of allenoates towards aziridines: synthesis of functionalized methylenepyrrolidines and pyrroles. Tetrahedron, 2010, 66, 8815-8822.	1.9	21
54	Novel 4,5,6,7-tetrahydropyrazolo[1,5-a]pyridine fused chlorins as very active photodynamic agents for melanoma cells. European Journal of Medicinal Chemistry, 2015, 103, 374-380.	5.5	21

#	Article	IF	CITATIONS
55	Microwave-assisted generation and reactivity of aza- and diazafulvenium methides: heterocycles via pericyclic reactions. Tetrahedron Letters, 2008, 49, 4889-4893.	1.4	20
56	Photochemistry and Vibrational Spectra of Matrix-Isolated Methyl 4-Chloro-5-phenylisoxazole-3-carboxylate. Journal of Physical Chemistry A, 2011, 115, 1199-1209.	2.5	20
57	Thiazolo[3,4- <i>b</i>]indazole-2,2-dioxides as Masked Extended Dipoles: Pericyclic Reactions of Benzodiazafulvenium Methides. Journal of Organic Chemistry, 2013, 78, 628-637.	3.2	20
58	Selective Synthesis of Tetrasubstituted 4â€(Tetrazolâ€5â€yl)â€1 <i>H</i> â€imidazoles from 2â€(Tetrazolâ€5â€yl)â€2 <i>H</i> â€azirines. European Journal of Organic Chemistry, 2014, 2014, 5159-5165.	2.4	20
59	Advances on photodynamic therapy of melanoma through novel ring-fused 5,15-diphenylchlorins. European Journal of Medicinal Chemistry, 2018, 146, 395-408.	5.5	20
60	A selective p53 activator and anticancer agent to improve colorectal cancer therapy. Cell Reports, 2021, 35, 108982.	6.4	20
61	2H-Azirines as dipolarophiles. Tetrahedron Letters, 2003, 44, 6313-6315.	1.4	19
62	Reactivity of 2-halo-2H-azirines. Part 3: Dehalogenation of 2-halo-2H-azirine-2-carboxylates. Tetrahedron, 2003, 59, 2345-2351.	1.9	19
63	Functionalization of dipyrromethanes via hetero-Diels–Alder reaction with azo- and nitrosoalkenes. Tetrahedron Letters, 2013, 54, 1553-1557.	1.4	19
64	Synthesis of chiral spiropyrazoline-l ² -lactams and spirocyclopropyl-l ² -lactams from 6-alkylidenepenicillanates. Tetrahedron, 2014, 70, 3812-3821.	1.9	19
65	Biogeographic differences in the allelopathy of leaf surface extracts of an invasive weed. Biological Invasions, 2019, 21, 3151-3168.	2.4	19
66	Current Advances in the Synthesis of Valuable Dipyrromethane Scaffolds: Classic and New Methods. Molecules, 2019, 24, 4348.	3.8	19
67	Synthesis and structure-activity relationships of new chiral spiro- \hat{l}^2 -lactams highly active against HIV-1 and Plasmodium. European Journal of Medicinal Chemistry, 2021, 219, 113439.	5.5	19
68	Attempted intramolecular diets-alder reactions of 2-azadienes: Alternative dimerisation and dipolar cycloaddition pathways. Tetrahedron, 1995, 51, 13455-13460.	1.9	18
69	Cycloaddition reactions of 3-aryl-5-phenyl-5H,7H-thiazolo[3,4-c]oxazol-4-ium-1-olates. Tetrahedron, 2002, 58, 5093-5102.	1.9	18
70	Methyl 3-Methyl-2H-azirine-2-carboxylate Photochemistry Studied by Matrix-isolation FTIR and DFT Calculations. Journal of Physical Chemistry A, 2006, 110, 10742-10749.	2.5	18
71	Unusual Photochemical Câ^'N Bond Cleavage in the Novel Methyl 2-Chloro-3-methyl-2H-azirine-2-carboxylate. Journal of Physical Chemistry A, 2006, 110, 8081-8092.	2.5	18
72	Intermolecular Dipolar Cycloaddition Reactions of 5H,7H-Thiazolo[3,4-c]oxazol-4-ium-1-olates. Tetrahedron, 2000, 56, 3419-3424.	1.9	17

#	Article	IF	Citations
73	â€~Higher-order' azomethine ylides in the synthesis of functionalized pyrroles and 5-oxo-5H-pyrrolizines. Tetrahedron, 2007, 63, 1833-1841.	1.9	17
74	4-Halo-1,3-oxazoles: Unambiguous structural assignment of 2-halo-2-benzoyl-2H-azirine-3-carboxylates thermal ring expansion products. Journal of Molecular Structure, 2009, 919, 47-53.	3.6	17
7 5	On-Water Synthesis of Dipyrromethanes via Bis-Hetero-Diels–Alder Reaction of Azo- and Nitrosoalkenes with Pyrrole. Synlett, 2014, 25, 423-427.	1.8	17
76	Thermolysis of 1-(thiophen-2-yl)-1H-tetrazoles: a route to thiophene-fused imidazoles and pyrimidines. Tetrahedron, 2015, 71, 3343-3350.	1.9	17
77	(1 <i>H</i> -Tetrazol-5-yl)-Allenes: Building Blocks for Tetrazolyl Heterocycles. Journal of Organic Chemistry, 2016, 81, 9028-9036.	3.2	17
78	A novel bis-furan scaffold for transthyretin stabilization and amyloid inhibition. European Journal of Medicinal Chemistry, 2016, 121, 823-840.	5 . 5	17
79	New 3-tetrazolyl- \hat{l}^2 -carbolines and \hat{l}^2 -carboline-3-carboxylates with anti-cancer activity. European Journal of Medicinal Chemistry, 2019, 179, 123-132.	5.5	17
80	Flash vacuum pyrolysis of 2,2-dioxo-1H,3H-pyrrolo[1,2-c]thiazoles and 2-vinyl-1H-pyrroles. Tetrahedron, 2008, 64, 9745-9753.	1.9	16
81	Chiral 6-hydroxymethyl-1H,3H-pyrrolo[1,2-c]thiazoles: Novel antitumor DNA monoalkylating agents. European Journal of Medicinal Chemistry, 2010, 45, 4676-4681.	5.5	16
82	1â€Methylâ€5â€(trifluoromethyl)azafulvenium Methide, an Intermediate That Undergoes Reaction through "Unusual― <i>cis</i> â€xi>exo 1,3―and <i>trans</i> â€ <i>exo</i> â€1,7 ycloadditions. European Jo Organic Chemistry, 2014, 2014, 2933-2941.	ou zna lof	16
83	Synthesis and anti-cancer activity of chiral tetrahydropyrazolo[1,5- a]pyridine-fused steroids. Steroids, 2017, 122, 16-23.	1.8	16
84	Ring-Fused Diphenylchlorins as Potent Photosensitizers for Photodynamic Therapy Applications: In Vitro Tumor Cell Biology and in Vivo Chick Embryo Chorioallantoic Membrane Studies. ACS Omega, 2019, 4, 17244-17250.	3.5	16
85	Tetrahydropyrazolo[1,5-a]pyridine-fused steroids and their inÂvitro biological evaluation in prostate cancer. European Journal of Medicinal Chemistry, 2019, 178, 168-176.	5. 5	16
86	Platinum(II) ring-fused chlorins as efficient theranostic agents: Dyes for tumor-imaging and photodynamic therapy of cancer. European Journal of Medicinal Chemistry, 2020, 200, 112468.	5 . 5	16
87	Spiro-Lactams as Novel Antimicrobial Agents. Current Topics in Medicinal Chemistry, 2020, 20, 140-152.	2.1	16
88	Diels-alder reactions of 1,2,4-triazines with cyclic vinyl ethers. Tetrahedron, 1993, 49, 5277-5290.	1.9	15
89	New chemistry of diazafulvenium methides: one way to pyrazoles. Tetrahedron Letters, 2006, 47, 791-794.	1.4	15
90	Synthesis and thermal reactivity of 3-benzyl-7-trifluoromethyl-1H,3H-pyrrolo[1,2-c]thiazole-2,2-dioxide. Tetrahedron, 2013, 69, 3646-3655.	1.9	15

#	Article	IF	CITATIONS
91	Synthesis of New 2-Halo-2-(1H-tetrazol-5-yl)-2H-azirines via a Non-Classical Wittig Reaction. Molecules, 2015, 20, 22351-22363.	3.8	15
92	Synthesis of chiral hexacyclic steroids via [8Ï€ + 2Ï€] cycloaddition of diazafulvenium methides. Organic and Biomolecular Chemistry, 2015, 13, 9127-9139.	2.8	15
93	d-Penicillamine and l-cysteine derived thiazolidine catalysts: an efficient approach to both enantiomers of secondary alcohols. Tetrahedron, 2016, 72, 5923-5927.	1.9	15
94	Reactivity of 1-arylnitrosoethylenes towards indole derivatives. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2016, 147, 1565-1573.	1.8	15
95	Properties and patterns in anion-receptors: A closer look at bambusurils. Journal of Molecular Liquids, 2017, 242, 640-652.	4.9	15
96	Phosphane-Catalyzed [3+2] Annulation of Allenoates with 3-Nitro-2H -chromenes: Synthesis of Tetrahydrocyclopenta[c]chromenes. European Journal of Organic Chemistry, 2019, 2019, 5441-5451.	2.4	15
97	Synthesis of tricyclic isoindoles and thiazolo [3,2-c] [1,3] benzoxazines. Tetrahedron, 2004, 60, 3949-3955.	1.9	14
98	Biological Evaluation of Dipyrromethanes in Cancer Cell Lines: Antiproliferative and Proâ€apoptotic Properties. ChemMedChem, 2017, 12, 701-711.	3.2	14
99	Switching on H-Tunneling through Conformational Control. Journal of the American Chemical Society, 2021, 143, 8266-8271.	13.7	14
100	The Reaction of an α-Oxophosphonium Ylide with Halogens: 2,3-Disubstituted Diethyl Butenedioates from Diethyl 2-Oxo-3-triphenylphosphoranylidenebutanedioate. Synthesis, 1997, 1997, 673-676.	2.3	13
101	Intramolecular dipolar cycloaddition reaction of 5H,7H-thiazolo[3,4-c]oxazol-4-ium-1-olates: synthesis of chiral $1H$ -pyrrolo[1,2-c]thiazole derivatives. Journal of the Chemical Society Perkin Transactions 1, 1999, , 1219.	0.9	13
102	Structure and photochemical behaviour of 3-azido-acrylophenones: a matrix isolation infrared spectroscopy study. Tetrahedron, 2011, 67, 7794-7804.	1.9	13
103	Hetero-Diels-Alder approach to Bis(indolyl)methanes. Bioorganic and Medicinal Chemistry, 2017, 25, 1122-1131.	3.0	13
104	A New Route to Cross-Conjugated Bis(enamines) and an Unusual Reaction with DDQ. Journal of Organic Chemistry, 1999, 64, 7229-7232.	3.2	12
105	Stereoselective formation of tertiary and quaternary carbon centers via inverse conjugate addition of carbonucleophiles to allenic esters. Tetrahedron, 2010, 66, 7720-7725.	1.9	12
106	Reactivity of sarcosine and 1,3-thiazolidine-4-carboxylic acid towards salicylaldehyde-derived alkynes and allenes. Tetrahedron, 2013, 69, 10081-10090.	1.9	12
107	Inter-regional variation on leaf surface defenses in native and non-native Centaurea solstitialis plants. Biochemical Systematics and Ecology, 2015, 62, 208-218.	1.3	11
108	Cholesteryl hemiesters alter lysosome structure and function and induce proinflammatory cytokine production in macrophages. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 210-220.	2.4	11

#	Article	IF	Citations
109	Regioselectivity in Hetero Diels–Alder Reactions. Journal of Chemical Education, 2019, 96, 148-152.	2.3	11
110	Spiro-Î ² -lactam BSS-730A Displays Potent Activity against HIV and Plasmodium. ACS Infectious Diseases, 2021, 7, 421-434.	3.8	11
111	Synthesis of novel tricyclic isoindole derivatives. Tetrahedron Letters, 2003, 44, 8285-8287.	1.4	10
112	Contribution to the synthesis of chiral allenic esters. Tetrahedron Letters, 2003, 44, 6409-6412.	1.4	10
113	Synthesis and Reactivity of Aziridines with Internal Dipolarophiles: An Approach to 1,4-Dihydrochromeno [4,3-b]pyrroles and 3-Methylenechromano [4,3-b]pyrroles. Synthesis, 2015, 47, 2781-2790.	2.3	10
114	A Review on (Hydro)Porphyrin-Loaded Polymer Micelles: Interesting and Valuable Platforms for Enhanced Cancer Nanotheranostics. Pharmaceutics, 2019, 11, 81.	4.5	10
115	Asymmetric Neber Reaction in the Synthesis of Chiral 2-(Tetrazol-5-yl)-2H-Azirines. Synlett, 2020, 31, 553-558.	1.8	10
116	Intermolecular cycloaddition of nonstabilized azomethine ylides generated from 1,3-thiazolidine-4-carboxylic acids: synthesis of 5,7a-dihydro-1H,3H-pyrrolo[1,2-c]thiazoles. Tetrahedron, 2006, 62, 9861-9871.	1.9	9
117	Substituent effects on the photolysis of methyl 2-carboxylate substituted aliphatic 2H-azirines. Journal of Molecular Structure, 2007, 834-836, 262-269.	3.6	9
118	On the photophysical behaviour of 4-halo-5-phenyl-oxazoles and isoxazoles: A correction and observations on the photoinduced isomerisation and degradation of methyl 4-halo-5-phenyl-isoxazole-3-carboxylates. Chemical Physics Letters, 2009, 474, 84-87.	2.6	9
119	Bambusurils as effective ion caging agents: Does desolvation guide conformation?. Chemical Physics Letters, 2017, 672, 89-96.	2.6	9
120	Reactivity of Steroidal 1-Azadienes toward Carbonyl Compounds under Enamine Catalysis: Chiral Penta- and Hexacyclic Steroids. Organic Letters, 2018, 20, 4332-4336.	4.6	9
121	Natural deep eutectic solvents in the hetero-Diels–Alder approach to bis(indolyl)methanes. Monatshefte FÃ-¼r Chemie, 2019, 150, 1275-1288.	1.8	9
122	Diels–Alder Cycloaddition Reactions in Sustainable Media. Molecules, 2022, 27, 1304.	3.8	9
123	On the photophysical behaviour of 4-halo-5-phenylisoxazoles. Chemical Physics Letters, 2005, 414, 98-101.	2.6	8
124	Conformational Behavior of Dimethyl 5-Methyl-1H,3H-pyrrolo[1,2-c][1,3]thiazole-6,7-dicarboxylate 2,2-Dioxide Isolated in Low-Temperature Matrixes. Journal of Physical Chemistry A, 2006, 110, 6531-6539.	2.5	8
125	New approach to exclusive formation of both enantiomers of \hat{l}^2 -amino acid derivatives. Tetrahedron, 2008, 64, 8141-8148.	1.9	8
126	New chiral building blocks of \hat{l}^2 -peptoid analogs. Tetrahedron, 2009, 65, 9116-9124.	1.9	8

#	Article	IF	Citations
127	Synthesis of Thieno[2,3â€ <i>d</i>]pyrimidines via Microwaveâ€Assisted Thermolysis of 1â€(Thiopheneâ€2â€yl)â€1 <i>H</i> â€tetrazoles. ChemistrySelect, 2016, 1, 4591-4595.	1.5	8
128	Synthesis of Novel Chiral Spiroisoxazolidineâ€Î²â€Lactams from 6â€Alkylidenepenicillanates: A 1,3â€Dipolar Cycloaddition Approach. European Journal of Organic Chemistry, 2020, 2020, 6259-6269.	2.4	8
129	Inducing molecular reactions by selective vibrational excitation of a remote antenna with near-infrared light. Chemical Communications, 2021, 57, 9570-9573.	4.1	8
130	Nitrogen-bridged heterocycles via cycloaddition of non-classical heterocyclic-fused-[c]thiazoles. Tetrahedron, 2011, 67, 8392-8403.	1.9	7
131	Conjugate Addition of Pyrazoles to Halogenated Nitroso- and Azoalkenes: A New Entry to Novel Bis(pyrazol-1-yl)methanes. Synlett, 2014, 25, 2868-2872.	1.8	7
132	Synthesis and thermal reactivity of thiazolo [3,4-a] benzimidazole-2,2-dioxides: approach to 1H-benzo [d] imidazoles via novel benzo-2,5-diazafulvenium methides. Tetrahedron, 2015, 71, 4227-4235.	1.9	7
133	Pericyclic Reactions of Azafulvenium Methides Bearing Internal Dipolarophiles – Synthesis of Chromene and Chromane Derivatives. European Journal of Organic Chemistry, 2015, 2015, 1341-1354.	2.4	7
134	One-Pot Synthetic Approach to Dipyrromethanes and Bis(indolyl)methanes via Nitrosoalkene Chemistry. Journal of Chemical Education, 2021, 98, 2661-2666.	2.3	7
135	Microwave-assisted reactions of allenic esters: [3+2] annulations and allenoate-Claisen rearrangement. Arkivoc, 2010, 2010, 70-81.	0.5	7
136	Aza Cope rearrangement of schiff bases derived from endo-norbornen-5-amines. Tetrahedron Letters, 1993, 34, 6945-6946.	1.4	6
137	Synthesis of Functionalized N-Vinyl Nitrogen-Containing Heterocycles. Synthesis, 2009, 2009, 2403-2407.	2.3	6
138	<i>Meso</i> -Substituted Corroles from Nitrosoalkenes and Dipyrromethanes. Journal of Organic Chemistry, 2020, 85, 3328-3335.	3.2	6
139	Reactivity of steroidal 1-azadienes toward enamines: an approach to novel chiral penta- and hexacyclic steroids. Organic and Biomolecular Chemistry, 2021, 19, 1122-1132.	2.8	6
140	2,4,6-Trinitro- <i>N</i> -(<i>m</i> -tolyl)aniline: A New Polymorphic Material Exhibiting Different Colors. Crystal Growth and Design, 2021, 21, 7269-7284.	3.0	6
141	Generation and reactivity of 3â€carbethoxyâ€5â€phenylâ€ <i>5H,7H</i> â€thiazolo[3,4â€ <i>c</i>]oxazolâ€4â€i Journal of Heterocyclic Chemistry, 2004, 41, 493-497.	umâ€1â€ 2.6	olate.
142	Conformational Space and Vibrational Spectra of Methyl 4-Chloro-5-phenyl-1,3-oxazole-2-carboxylate. Journal of Physical Chemistry A, 2010, 114, 9074-9082.	2.5	5
143	Novel fluorinated ring-fused chlorins as promising PDT agents against melanoma and esophagus cancer. RSC Medicinal Chemistry, 2021, 12, 615-627.	3.9	5
144	Synthesis of 5H-chromeno[3,4-b]pyridines via DABCO-catalyzed [3 + 3] annulation of 3-nitro-2H-chromenes and allenoates. Organic and Biomolecular Chemistry, 2021, 19, 9711-9722.	2.8	5

#	Article	IF	CITATIONS
145	Synthesis of Chiral Thiazolo [3,4-a] pyrazine-5,8-diones. Heterocycles, 2006, 68, 679.	0.7	4
146	Synthesis of Pyrroles in Supercritical Carbon Dioxide: Formal [3+2] Cycloaddition of 2-Benzoyl-Aziridines and Allenoates. Synthesis, 2011, 2011, 3516-3522.	2.3	4
147	Synthesis and Reactivity of Aziridines with Internal Dipolarophiles: An Approach to 1,4-Dihydrochromeno [4,3-b]pyrroles and 3-Methylenechromano [4,3-b]pyrroles. Synthesis, 2015, 47, 3434-3434.	2.3	4
148	Reduction of Oximes and Hydrazones: Asymmetric and Diastereoselective Approaches. Current Organic Chemistry, 2021, 25, 2175-2198.	1.6	4
149	Cholesteryl hemiazelate causes lysosome dysfunction impacting vascular smooth muscle cell homeostasis. Journal of Cell Science, 2022, 135, .	2.0	4
150	Hexahydro-Pyrrolo[1,2,5:3,4,5]Thiazolo[3,4-c]Oxazol-1-ones: New Chiral Tricyclic L-Cysteine and D-Penicillamine Derivatives. Letters in Organic Chemistry, 2006, 3, 820-826.	0.5	4
151	Chemistry of aza- and diazafulvenium methides in heterocyclic synthesis. Pure and Applied Chemistry, 2016, 88, 457-475.	1.9	3
152	Conformational behaviour, photochemistry and flash vacuum pyrolysis of a 2-(1H-tetrazol-1-yl)thiophene. New Journal of Chemistry, 2017, 41, 15581-15589.	2.8	3
153	A Novel Bioanalytical Method for the Determination of Opioids in Blood and Pericardial Fluid. Journal of Analytical Toxicology, 2020, 44, 754-768.	2.8	3
154	Compressive single pixel phosphorescence lifetime and intensity simultaneous imaging: a pilot study using oxygen sensitive biomarkers. , $2021, \ldots$		3
155	Portrayal of the color polymorphism in the 5-acetyl-derivative of ROY. CrystEngComm, 2022, 24, 1459-1474.	2.6	3
156	Insights into the anticancer activity of chiral alkylidene- \hat{l}^2 -lactams and alkylidene- \hat{l}^3 -lactams: Synthesis and biological investigation. Bioorganic and Medicinal Chemistry, 2022, 63, 116738.	3.0	3
157	Ring-Fused meso-Tetraarylchlorins as Auspicious PDT Sensitizers: Synthesis, Structural Characterization, Photophysics, and Biological Evaluation. Frontiers in Chemistry, 2022, 10, 873245.	3.6	3
158	Applications of Photodynamic Therapy in Endometrial Diseases. Bioengineering, 2022, 9, 226.	3.5	3
159	1,3-Thiazolidine-4-carboxylic Acids as Building Blocks in Organic Synthesis. ChemInform, 2005, 36, no.	0.0	2
160	Synthesis of Azides., 0,, 53-94.		2
161	Synthesis and biological evaluation of new naphthoquinoneâ€containing pyrroloâ€thiazoles as anticancer agents. Journal of Heterocyclic Chemistry, 2010, 47, 960-966.	2.6	2
162	Intramolecular Cycloaddition of Imines of Cysteine Derivatives. Molecules, 1998, 3, 60-63.	3.8	1

#	Article	IF	CITATIONS
163	Lead optimization of resilient next-generation transthyretin stabilizers for multiple target-product profiles: approaching the CNS. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2019, 26, 77-78.	3.0	1
164	Effectiveness of photodynamic therapy on treatment response and survival of patients with recurrent oral squamous cell carcinoma. JBI Evidence Synthesis, 2021, Publish Ahead of Print, .	1.3	1
165	Ethyl 7-Acetyl-8a-methyl-3-(1-phenyl-1H-tetrazol-5-yl)-1,4,4a,5,6,8a-hexahydro-7H-pyrano[2,3-c]pyridazine-1-carboxylate MolBank, 2022, 2022, M1338.	2.0.5	1
166	Molecular and crystal structures of N-picryl-m-phenolidine and investigation of single crystal polarized Raman spectra. Journal of Molecular Structure, 2022, 1262, 133111.	3.6	1
167	Reactivity of 2-Halo-2H-azirines. Part 3. Dehalogenation of 2-Halo-2H-azirine-2-carboxylates ChemInform, 2003, 34, no.	0.0	0
168	2H-Azirines as Dipolarophiles ChemInform, 2003, 34, no.	0.0	0
169	Synthesis of Novel Tricyclic Isoindole Derivatives ChemInform, 2004, 35, no.	0.0	0
170	Reactivity of Azafulvenium Methides Derived from Pyrrolo[1,2-c]thiazole-2,2-dioxides: Synthesis of Functionalized Pyrroles ChemInform, 2004, 35, no.	0.0	0
171	Synthesis of Tricyclic Isoindoles and Thiazolo[3,2-c][1,3]benzoxazines ChemInform, 2004, 35, no.	0.0	0
172	Generation and Reactivity of 3-Carbethoxy-5-phenyl-5H,7H-thiazolo[3,4-c]oxazol-4-ium-1-olate ChemInform, 2004, 35, no.	0.0	0
173	Exploiting 2-Halo-2H-azirine Chemistry. ChemInform, 2005, 36, no.	0.0	O
174	Novel Asymmetric Wittig Reaction: Synthesis of Chiral Allenic Esters ChemInform, 2005, 36, no.	0.0	0
175	Recent Advances on the Synthesis and Reactivity of Isoxazoles. ChemInform, 2005, 36, no.	0.0	0
176	N-Vinyl- and C-Vinylpyrroles from Azafulvenium Methides. Flash Vacuum Pyrolysis Route to 5-Oxo-5H-pyrrolizines and 1-Azabenzo[f]azulenes ChemInform, 2005, 36, no.	0.0	0
177	Spectroscopic and theoretical investigation of the conformational space of a pyrazolo-thiazole precursor of extended dipole diazafulvenium methide intermediates. Journal of Molecular Structure, 2009, 921, 101-108.	3.6	O
178	Synthesis of Chiral Pyrrolo[1,2 $\hat{a} \in \epsilon$]thiazoles via Intramolecular Dipolar Cycloaddition of Muenchnones: An Interesting Rearrangement to Pyrrolo[1,2 $\hat{a} \in \epsilon$]thiazines ChemInform, 2002, 33, 112-112.	0.0	0
179	Novel antitumor DNA monoalkylating agents: Synthesis and biological evaluation. BMC Proceedings, 2010, 4, .	1.6	0
180	Advances on photodynamic therapy through new pyridine-fused diphenylchlorins as photosensitizers for melanoma treatment. Porto Biomedical Journal, 2017, 2, 227.	1.0	0

#	Article	IF	CITATIONS
181	"The Chemistry of Allenes― Current Organic Chemistry, 2020, 23, 2975-2975.	1.6	O
182	Recent Advances on Functional Group Interconversion. Current Organic Chemistry, 2021, 25, 2155-2155.	1.6	0
183	ONE-POT DIASTEREOSELECTIVE SYNTHESIS OF CHIRAL TRICYCLIC I-CYSTEINE AND d-PENICILLAMINE DERIVATIVES: A LABORATORY EXPERIMENT. Quimica Nova, 2019, , .	0.3	O
184	Isolation and Identification of Cytotoxic Compounds Present in Biomaterial Life®. Materials, 2022, 15, 871.	2.9	0