Subhash C Mishra, Fnae, Fasme, Fie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8739523/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method. Journal of Computational Physics, 2007, 223, 89-107.	3.8	199
2	Conventional and newly developed bioheat transport models in vascularized tissues: A review. Journal of Thermal Biology, 2013, 38, 107-125.	2.5	141
3	Application of the lattice Boltzmann method for solving the energy equation of a 2-D transient conduction–radiation problem. International Journal of Heat and Mass Transfer, 2005, 48, 3648-3659.	4.8	115
4	An inverse analysis of a transient 2-D conduction–radiation problem using the lattice Boltzmann method and the finite volume method coupled with the genetic algorithm. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109, 2060-2077.	2.3	109
5	Development and comparison of the DTM, the DOM and the FVM formulations for the short-pulse laser transport through a participating medium. International Journal of Heat and Mass Transfer, 2006, 49, 1820-1832.	4.8	105
6	A Lattice Boltzmann Formulation for the Analysis of Radiative Heat Transfer Problems in a Participating Medium. Numerical Heat Transfer, Part B: Fundamentals, 2010, 57, 126-146.	0.9	100
7	Transient Conduction-Radiation Heat Transfer in Participating Media Using the Lattice Boltzmann Method and the Discrete Transfer Method. Numerical Heat Transfer; Part A: Applications, 2005, 47, 935-954.	2.1	85
8	Simulation of Natural Convection in the Presence of Volumetric Radiation Using the Lattice Boltzmann Method. Numerical Heat Transfer; Part A: Applications, 2008, 55, 18-41.	2.1	84
9	Studies on porous radiant burners for LPG (liquefied petroleum gas) cooking applications. Energy, 2011, 36, 6074-6080.	8.8	78
10	Computational efficiency improvements of the radiative transfer problems with or without conduction––a comparison of the collapsed dimension method and the discrete transfer method. International Journal of Heat and Mass Transfer, 2003, 46, 3083-3095.	4.8	76
11	Discrete ordinate method with a new and a simple quadrature scheme. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 101, 249-262.	2.3	71
12	Discrete transfer method applied to radiative transfer in a variable refractive index semitransparent medium. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 102, 432-440.	2.3	71
13	An Inverse Analysis for Parameter Estimation Applied to a Non-Fourier Conduction–Radiation Problem. Heat Transfer Engineering, 2011, 32, 455-466.	1.9	63
14	Estimation of tumor characteristics in a breast tissue with known skin surface temperature. Journal of Thermal Biology, 2013, 38, 311-317.	2.5	63
15	Numerical analysis for determination of the presence of a tumor and estimation of its size and location in a tissue. Journal of Thermal Biology, 2013, 38, 32-40.	2.5	57
16	Analysis of Solidification of a Semitransparent Planar Layer Using the Lattice Boltzmann Method and the Discrete Transfer Method. Numerical Heat Transfer; Part A: Applications, 2006, 49, 279-299.	2.1	55
17	Application of the Lattice Boltzmann Method and the Discrete Ordinates Method for Solving Transient Conduction and Radiation Heat Transfer Problems. Numerical Heat Transfer; Part A: Applications, 2007, 52, 757-775.	2.1	53
18	Multiparameter Estimation in a Transient Conduction-Radiation Problem Using the Lattice Boltzmann Method and the Finite-Volume Method Coupled with the Genetic Algorithms. Numerical Heat Transfer; Part A: Applications, 2008, 53, 1321-1338.	2.1	52

#	Article	IF	CITATIONS
19	Numerical and experimental analyses of LPG (liquefied petroleum gas) combustion in a domestic cooking stove with a porous radiant burner. Energy, 2016, 95, 404-414.	8.8	52
20	Lattice Boltzmann Method Applied to Variable Thermal Conductivity Conduction and Radiation Problems. Journal of Thermophysics and Heat Transfer, 2006, 20, 895-902.	1.6	50
21	Retrieval of thermal properties in a transient conduction–radiation problem with variable thermal conductivity. International Journal of Heat and Mass Transfer, 2009, 52, 2749-2758.	4.8	47
22	Lattice Boltzmann Method Applied to the Solution of Energy Equation of a Radiation and Non-Fourier Heat Conduction Problem. Numerical Heat Transfer; Part A: Applications, 2008, 54, 798-818.	2.1	45
23	Simultaneous estimation of size, radial and angular locations of a malignant tumor in a 3-D human breast – A numerical study. Journal of Thermal Biology, 2015, 52, 147-156.	2.5	42
24	Analysis of Conduction and Radiation Heat Transfer in a 2-D Cylindrical Medium Using the Modified Discrete Ordinate Method and the Lattice Boltzmann Method. Numerical Heat Transfer; Part A: Applications, 2011, 60, 254-287.	2.1	40
25	Inverse analysis applied to retrieval of parameters and reconstruction of temperature field in a transient conduction–radiation heat transfer problem involving mixed boundary conditions. International Communications in Heat and Mass Transfer, 2010, 37, 52-57.	5.6	39
26	Analysis of conduction–radiation problem in absorbing, emitting and anisotropically scattering media using the collapsed dimension method. International Journal of Heat and Mass Transfer, 2002, 45, 2159-2168.	4.8	37
27	Heat transfer characteristics of a porous radiant burner under the influence of a 2-D radiation field. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 84, 527-537.	2.3	37
28	Lattice Boltzmann method applied to the solution of the energy equations of the transient conduction and radiation problems on non-uniform lattices. International Journal of Heat and Mass Transfer, 2008, 51, 68-82.	4.8	36
29	Combined radiation and convection heat transfer in a porous channel bounded by isothermal parallel plates. International Journal of Heat and Mass Transfer, 2004, 47, 1001-1013.	4.8	35
30	Lattice Boltzmann Method Applied to the Analysis of Transient Conduction-Radiation Problems in a Cylindrical Medium. Numerical Heat Transfer; Part A: Applications, 2009, 56, 42-59.	2.1	35
31	Non-invasive estimation of size and location of a tumor in a human breast using a curve fitting technique. International Communications in Heat and Mass Transfer, 2014, 56, 63-70.	5.6	35
32	Analyses of non-Fourier heat conduction in 1-D cylindrical and spherical geometry – An application of the lattice Boltzmann method. International Journal of Heat and Mass Transfer, 2012, 55, 7015-7023.	4.8	34
33	Simultaneous Retrieval of Parameters in a Transient Conduction-Radiation Problem Using a Differential Evolution Algorithm. Numerical Heat Transfer; Part A: Applications, 2013, 63, 373-395.	2.1	33
34	Analysis of Conduction-Radiation Heat Transfer in a 2D Enclosure Using the Lattice Boltzmann Method. Numerical Heat Transfer; Part A: Applications, 2014, 66, 669-688.	2.1	33
35	Application of a Particle Swarm Algorithm for Parameter Retrieval in a Transient Conduction-Radiation Problem. Numerical Heat Transfer; Part A: Applications, 2011, 59, 672-692.	2.1	32
36	Analysis of radiative transport in a cylindrical enclosure—An application of the modified discrete ordinate method. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 1065-1081.	2.3	32

#	Article	IF	CITATIONS
37	Analysis of transport of collimated radiation in a participating media using the lattice Boltzmann method. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113, 2088-2099.	2.3	32
38	The combustion characteristics and performance evaluation of DME (dimethyl ether) as an alternative fuel in a two-section porous burner for domestic cooking application. Energy, 2018, 150, 176-189.	8.8	32
39	Analysis of radiative signals from normal and malignant human skins subjected to a short-pulse laser. International Journal of Heat and Mass Transfer, 2014, 68, 278-294.	4.8	31
40	Unstructured Polygonal Finite-Volume Solutions of Radiative Heat Transfer in a Complex Axisymmetric Enclosure. Numerical Heat Transfer, Part B: Fundamentals, 2010, 57, 227-239.	0.9	30
41	Analysis of non-Fourier conduction and radiation in a cylindrical medium using lattice Boltzmann method and finite volume method. International Journal of Heat and Mass Transfer, 2013, 61, 41-55.	4.8	30
42	Laser-induced hyperthermia of nanoshell mediated vascularized tissue – A numerical study. Journal of Thermal Biology, 2014, 44, 55-62.	2.5	30
43	Solving transient heat conduction problems on uniform and non-uniform lattices using the lattice Boltzmann method. International Communications in Heat and Mass Transfer, 2009, 36, 322-328.	5.6	28
44	Lattice Boltzmann Method Applied to Radiative Transport Analysis in a Planar Participating Medium. Heat Transfer Engineering, 2014, 35, 1267-1278.	1.9	28
45	Suitability of frequency modulated thermal wave imaging for skin cancer detection—A theoretical prediction. Journal of Thermal Biology, 2015, 51, 65-82.	2.5	27
46	Some Studies on Fuel Characteristics of Mesua Ferrea. Heat Transfer Engineering, 2008, 29, 405-409.	1.9	26
47	Thermographic evaluation of early melanoma within the vascularized skin using combined non-Newtonian blood flow and bioheat models. Computers in Biology and Medicine, 2014, 53, 206-219.	7.0	26
48	Performance evaluation of four radiative transfer methods in solving multi-dimensional radiation and/or conduction heat transfer problems. International Journal of Heat and Mass Transfer, 2012, 55, 5819-5835.	4.8	25
49	TRANSIENT CONDUCTION AND RADIATION HEAT TRANSFER WITH VARIABLE THERMAL CONDUCTIVITY. Numerical Heat Transfer; Part A: Applications, 2002, 41, 851-867.	2.1	24
50	Radiative heat transfer in absorbing–emitting–scattering gray medium inside 1-D gray Cartesian enclosure using the collapsed dimension method. International Journal of Heat and Mass Transfer, 2002, 45, 697-700.	4.8	24
51	Lattice Boltzmann Method and Modified Discrete Ordinate Method Applied to Radiative Transport in a Spherical Medium with and without Conduction. Numerical Heat Transfer; Part A: Applications, 2010, 58, 852-881.	2.1	24
52	Transient response of a planar participating medium subjected to a train of short-pulse radiation. International Journal of Heat and Mass Transfer, 2008, 51, 2418-2432.	4.8	23
53	Solidification of a 2-D semitransparent medium using the lattice Boltzmann method and the finite volume method. International Journal of Heat and Mass Transfer, 2008, 51, 4447-4460.	4.8	23
54	Radiation Element Method Coupled with the Lattice Boltzmann Method Applied to the Analysis of Transient Conduction and Radiation Heat Transfer Problem with Heat Generation in a Participating Medium. Numerical Heat Transfer; Part A: Applications, 2010, 57, 346-368.	2.1	22

#	Article	IF	CITATIONS
55	Combined conduction and radiation heat transfer with variable thermal conductivity and variable refractive index. International Journal of Heat and Mass Transfer, 2008, 51, 83-90.	4.8	21
56	Analysis of transport of short-pulse radiation in a participating medium using lattice Boltzmann method. International Journal of Heat and Mass Transfer, 2014, 77, 218-229.	4.8	21
57	Usability of porous burner in kerosene pressure stove: An experimental investigation aided by energy and exergy analyses. Energy, 2016, 103, 251-260.	8.8	21
58	Thermal signatures of a localized inhomogeneity in a 2-D participating medium subjected to an ultra-fast step-pulse laser wave. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109, 705-726.	2.3	20
59	Analysis of combustion of liquefied petroleum gas in a porous radiant burner. International Journal of Heat and Mass Transfer, 2016, 95, 488-498.	4.8	20
60	Boundary Surface Heat Fluxes in a Square Enclosure with an Embedded Design Element. Journal of Thermophysics and Heat Transfer, 2010, 24, 845-849.	1.6	19
61	Analysis of Non-Fourier Conduction-Radiation Heat Transfer in a Cylindrical Enclosure. Numerical Heat Transfer; Part A: Applications, 2010, 58, 943-962.	2.1	19
62	Analysis of collimated radiation in participating media using the discrete transfer method. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 96, 123-135.	2.3	18
63	Optimization of Heat Fluxes on the Heater and the Design Surfaces of a Radiating-Conducting Medium. Numerical Heat Transfer; Part A: Applications, 2009, 56, 846-860.	2.1	18
64	Combined Mode Conduction and Radiation Heat Transfer in a Porous Medium and Estimation of the Optical Properties of the Porous Matrix. Numerical Heat Transfer; Part A: Applications, 2015, 67, 1119-1135.	2.1	18
65	Analysis of non-Fourier conduction and radiation in a differentially heated 2-D square cavity. International Journal of Heat and Mass Transfer, 2014, 79, 116-125.	4.8	17
66	Modeling skin cooling using optical windows and cryogens during laser induced hyperthermia in a multilayer vascularized tissue. Applied Thermal Engineering, 2015, 89, 28-35.	6.0	17
67	TRANSIENT CONDUCTION AND RADIATION HEAT TRANSFER WITH HEAT GENERATION IN A PARTICIPATING MEDIUM USING THE COLLAPSED DIMENSION METHOD. Numerical Heat Transfer; Part A: Applications, 2001, 39, 79-100.	2.1	17
68	Analysis of non-Fourier conduction and volumetric radiation in a concentric spherical shell using lattice Boltzmann method and finite volume method. International Journal of Heat and Mass Transfer, 2014, 68, 51-66.	4.8	16
69	EFFECT OF ANGULAR QUADRATURE SCHEMES ON THE COMPUTATIONAL EFFICIENCY OF THE DISCRETE TRANSFER METHOD FOR SOLVING RADIATIVE TRANSPORT PROBLEMS WITH PARTICIPATING MEDIUM. Numerical Heat Transfer, Part B: Fundamentals, 2004, 46, 463-478.	0.9	15
70	Numerical analysis of solidification of a 3-D semitransparent medium in presence of volumetric radiation. International Journal of Thermal Sciences, 2009, 48, 1116-1128.	4.9	15
71	Minimizing Tissue Surface Overheating Using Convective Cooling During Laser-Induced Thermal Therapy: A Numerical Study. Journal of Thermal Science and Engineering Applications, 2016, 8, .	1.5	15
72	Analysis of a Localized Fire in a 3-D Tunnel Using a Hybrid Solver: Lattice Boltzmann Method, Finite-Volume Method, and Fully Explicit Upwind Scheme. Numerical Heat Transfer; Part A: Applications, 2008, 53, 392-417.	2.1	14

#	Article	IF	CITATIONS
73	Analysis of a Hyperbolic Heat Conduction-Radiation Problem With Temperature Dependent Thermal Conductivity. Journal of Heat Transfer, 2009, 131, .	2.1	14
74	The lattice Boltzmann method and the finite volume method applied to conduction–radiation problems with heat flux boundary conditions. International Journal for Numerical Methods in Engineering, 2009, 78, 172-195.	2.8	14
75	Study of thermal behavior of a biological tissue: An equivalence of Pennes bioheat equation and Wulff continuum model. Journal of Thermal Biology, 2014, 45, 103-109.	2.5	14
76	Thermal Analysis of the Increasing Subcutaneous Fat Thickness Within the Human Skin—A Numerical Study. Numerical Heat Transfer; Part A: Applications, 2015, 67, 313-329.	2.1	14
77	Combined mode conduction and radiation heat transfer in a spherical geometry with non-Fourier effect. International Journal of Heat and Mass Transfer, 2011, 54, 2975-2989.	4.8	13
78	Thermal Assessment of Ablation Limit of Subsurface Tumor During Focused Ultrasound and Laser Heating. Journal of Thermal Science and Engineering Applications, 2016, 8, .	1.5	13
79	Interaction of a Short-Pulse Laser of a Gaussian Temporal Profile with an Inhomogeneous Medium. Numerical Heat Transfer; Part A: Applications, 2007, 53, 625-640.	2.1	12
80	Simultaneous Reconstruction of Thermal Field and Retrieval of Parameters in a Cylindrical Enclosure. Numerical Heat Transfer; Part A: Applications, 2008, 54, 983-998.	2.1	12
81	Thermal Modeling of Mg ₂ Ni-Based Solid-State Hydrogen Storage Reactor. Heat Transfer Engineering, 2014, 35, 1354-1362.	1.9	12
82	Analysis of Dual-Phase-Lag Non-Fourier Conduction and Radiation Heat Transfer in a Planar Slab. Numerical Heat Transfer; Part A: Applications, 2015, 68, 1010-1022.	2.1	12
83	Analysis of Radiative Heat Transfer in a Planar Participating Medium Subjected to Diffuse and/or Collimated Radiation—A Comparison of the DTM, the DOM, and the FVM. Numerical Heat Transfer; Part A: Applications, 2007, 52, 481-496.	2.1	11
84	Transport of a train of short-pulse radiation of step temporal profile through a 2-D participating medium. International Journal of Heat and Mass Transfer, 2008, 51, 2282-2298.	4.8	11
85	The finite volume method approach to the collapsed dimension method in analyzing steady/transient radiative transfer problems in participating media. International Communications in Heat and Mass Transfer, 2011, 38, 291-297.	5.6	11
86	Estimation of power of heaters in a radiant furnace for uniform thermal conditions on 3-D irregular shaped objects. International Journal of Heat and Mass Transfer, 2012, 55, 4340-4351.	4.8	11
87	Analysis of Radiative Transport in a 2-D Cylindrical Participating Medium Subjected to Collimated Radiation. Numerical Heat Transfer; Part A: Applications, 2014, 66, 884-903.	2.1	11
88	Numerical Analysis of Rayleigh-Bénard Convection with and Without Volumetric Radiation. Numerical Heat Transfer; Part A: Applications, 2014, 65, 144-164.	2.1	11
89	Simultaneous Estimation of Properties in a Combined Mode Conduction–Radiation Heat Transfer in a Porous Medium. Heat Transfer - Asian Research, 2016, 45, 699-713	2.8	11
90	Radiative Transfer of a Short-Pulse Laser Wave of Gaussian Temporal Profile through a Two-Dimensional Participating Medium Containing Inhomogeneities of Different Shapes at Various Locations, Numerical Heat Transfer: Part A: Applications, 2008, 54, 546-567	2.1	10

#	Article	IF	CITATIONS
91	Numerical Analysis of an Inverse Boundary Design Problem of a 3-D Radiant Furnace with a 3-D Design Object. Numerical Heat Transfer; Part A: Applications, 2011, 60, 25-49.	2.1	10
92	Numerical Study of Dynamics of Bubbles Using Lattice Boltzmann Method. Industrial & Engineering Chemistry Research, 2012, 51, 6364-6376.	3.7	10
93	The DOM approach to the collapsed dimension method for solving radiative transport problems with participating media. International Journal of Heat and Mass Transfer, 2006, 49, 30-41.	4.8	9
94	Assessment of Signals from a Tissue Phantom Subjected to Radiation Sources of Temporal Spans of the Order of a Nano-, Pico-, and Femto-Second—A Numerical Study. Numerical Heat Transfer; Part A: Applications, 2011, 60, 154-170.	2.1	9
95	Uniform thermal conditions on 3-D object: Optimal power estimation of panel heaters in a 3-D radiant enclosure. International Journal of Thermal Sciences, 2012, 51, 63-76.	4.9	9
96	Theoretical and numerical investigations of an electroosmotic flow micropump with interdigitated electrodes. Microsystem Technologies, 2014, 20, 157-168.	2.0	9
97	Simultaneous estimation of four parameters in a combined-mode heat transfer in a 2D porous matrix with heat generation. Numerical Heat Transfer; Part A: Applications, 2017, 71, 677-692.	2.1	9
98	Collapsed Dimension Method Applied to Radiative Transfer Problems in Complex Enclosures with Participating Medium. Numerical Heat Transfer, Part B: Fundamentals, 2002, 42, 367-388.	0.9	8
99	An Insight Into The Modeling of Short-Pulse Laser Transport Through A Participating Medium. Numerical Heat Transfer, Part B: Fundamentals, 2007, 52, 373-385.	0.9	8
100	View factor calculation in the 2-D geometries using the collapsed dimension method. International Communications in Heat and Mass Transfer, 2008, 35, 630-636.	5.6	8
101	Analyses of dual-phase lag heat conduction in 1-D cylindrical and spherical geometry – An application of the lattice Boltzmann method. International Journal of Heat and Mass Transfer, 2016, 96, 627-642.	4.8	8
102	Analysis of hyperbolic heat conduction in 1-D planar, cylindrical, and spherical geometry using the lattice Boltzmann method. International Communications in Heat and Mass Transfer, 2016, 74, 48-54.	5.6	8
103	Simultaneous estimation of parameters in analyzing porous medium combustion—assessment of seven optimization tools. Numerical Heat Transfer; Part A: Applications, 2017, 71, 666-676.	2.1	8
104	Comparison of the thermal effects of the transport of a short-pulse laser and a multi-pulse laser through a participating medium. International Journal of Heat and Mass Transfer, 2012, 55, 5583-5596.	4.8	7
105	TRANSIENT CONDUCTION-RADIATION INTERACTION IN A PLANAR PACKED BED WITH VARIABLE POROSITY. Numerical Heat Transfer; Part A: Applications, 2003, 44, 281-297.	2.1	6
106	Effects of the Incidence of a Gaussian Temporal Short-Pulse Laser of Different Spatial Profiles on a Two-Dimensional, Rectangular, Inhomogeneous Participating Medium. Numerical Heat Transfer; Part A: Applications, 2008, 54, 525-545.	2.1	6
107	Analysis of combined mode heat transfer in a porous medium using the lattice Boltzmann method. Numerical Heat Transfer; Part A: Applications, 2016, 69, 1092-1105.	2.1	6
108	Numerical analysis of combined-mode dual-phase-lag heat conduction and radiation in an absorbing, emitting, and scattering cylindrical medium. Numerical Heat Transfer; Part A: Applications, 2017, 71, 769-788.	2.1	6

7

#	Article	IF	CITATIONS
109	Effect of a step short-pulse laser train on an inhomogeneous planar participating medium. International Communications in Heat and Mass Transfer, 2008, 35, 1073-1078.	5.6	5
110	Analysis of 3-D Conduction - Radiation Heat Transfer Using the Lattice Boltzmann Method. Journal of Thermophysics and Heat Transfer, 2009, 23, 210-216.	1.6	5
111	Analysis of the Transport of a Train of Short-Pulse Radiation of Gaussian Temporal Profile Through a 2-D Participating Medium. Heat Transfer Engineering, 2009, 30, 1197-1207.	1.9	5
112	Effects of locations of a 3-D design object in a 3-D radiant furnace for prescribed uniform thermal conditions. Applied Thermal Engineering, 2011, 31, 3262-3274.	6.0	5
113	Detection of Subsurface Skin Lesion Using Frequency Modulated Thermal Wave Imaging: A Numerical Study. , 2013, , .		3
114	Nanoparticle Mediated Transmittance Signals From Pulsed Laser Irradiated Cancerous Lung as a Function of Respiration. Optik, 2015, 126, 5605-5609.	2.9	3
115	Effect of Dimethyl Ether as an Additive to Liquefied Petroleum Gas Flame in SiC–Al2O3-Based Porous Inert Burner. Energy & Fuels, 2017, 31, 12721-12740.	5.1	3
116	On Configuration of Load in Radiant Furnace for Uniform Thermal Conditions. Heat Transfer Engineering, 2014, 35, 94-109.	1.9	2
117	Modeling bioheat transfer processes and thermoregulatory responses. Journal of Thermal Biology, 2016, 62, 97.	2.5	1
118	Selected Papers Presented at the First International Conference on Thermal Energy and Environment. Heat Transfer Engineering, 2014, 35, 1225-1226.	1.9	0
119	Analysis of Conduction and Radiation Heat Transfer in a Differentially Heated 2â€D Square Enclosure. Heat Transfer - Asian Research, 2017, 46, 384-408.	2.8	0