List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8739450/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanosized hydroxyapatite and other calcium phosphates: Chemistry of formation and application as drug and gene delivery agents. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 96B, 152-191.	1.6	438
2	SYNTHESIS OF MATERIALS WITHIN REVERSE MICELLES. Surface Review and Letters, 2005, 12, 239-277.	0.5	208
3	Reverse micelles: Inert nano-reactors or physico-chemically active guides of the capped reactions. Advances in Colloid and Interface Science, 2007, 133, 23-34.	7.0	144
4	Dynamic Light Scattering Based Microelectrophoresis: Main Prospects and Limitations. Journal of Dispersion Science and Technology, 2012, 33, 1762-1786.	1.3	117
5	The role of hydroxyl channel in defining selected physicochemical peculiarities exhibited by hydroxyapatite. RSC Advances, 2015, 5, 36614-36633.	1.7	103
6	Complex relationship between alumina and selenium-doped carbonated hydroxyapatite as the ceramic additives to electrospun polycaprolactone scaffolds for tissue engineering applications. Journal of Alloys and Compounds, 2019, 801, 70-81.	2.8	88
7	Ion-doped hydroxyapatite: An impasse or the road to follow?. Ceramics International, 2020, 46, 11443-11465.	2.3	84
8	Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones. Journal of Materials Science: Materials in Medicine, 2013, 24, 343-354.	1.7	83
9	Nanotechnologies: What we do not know. Technology in Society, 2007, 29, 43-61.	4.8	82
10	Phase composition control of calcium phosphate nanoparticles for tunable drug delivery kinetics and treatment of osteomyelitis. I. Preparation and drug release. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1416-1426.	2.1	79
11	In Vitro Analysis of Nanoparticulate Hydroxyapatite/Chitosan Composites as Potential Drug Delivery Platforms for the Sustained Release of Antibiotics in the Treatment of Osteomyelitis. Journal of Pharmaceutical Sciences, 2014, 103, 567-579.	1.6	79
12	Gold as a dopant in selenium-containing carbonated hydroxyapatite fillers of nanofibrous ε-polycaprolactone scaffolds for tissue engineering. International Journal of Pharmaceutics, 2020, 577, 118950.	2.6	78
13	Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues. Materials Science and Engineering C, 2016, 60, 357-364.	3.8	76
14	Entering the Era of Nanoscience: Time to Be So Small Vuk UskokovÃc. Journal of Biomedical Nanotechnology, 2013, 9, 1441-1470.	0.5	74
15	Rare-earth (Gd3+,Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging. Scientific Reports, 2019, 9, 16305.	1.6	74
16	Nanostructured Platforms for the Sustained and Local Delivery of Antibiotics in the Treatment of Osteomyelitis. Critical Reviews in Therapeutic Drug Carrier Systems, 2015, 32, 1-59.	1.2	73
17	Effect of Calcium Phosphate Particle Shape and Size on Their Antibacterial and Osteogenic Activity in the Delivery of Antibiotics in Vitro. ACS Applied Materials & amp; Interfaces, 2013, 5, 2422-2431.	4.0	72
18	Calcium Phosphate Nanoparticles as Intrinsic Inorganic Antimicrobials: The Antibacterial Effect. ACS Applied Materials & Interfaces, 2018, 10, 34013-34028.	4.0	70

#	Article	IF	CITATIONS
19	Self-Setting Calcium Phosphate Cements with Tunable Antibiotic Release Rates for Advanced Antimicrobial Applications. ACS Applied Materials & Interfaces, 2016, 8, 7691-7708.	4.0	69
20	Brain and bone cancer targeting by a ferrofluid composed of superparamagnetic iron-oxide/silica/carbon nanoparticles (earthicles). Acta Biomaterialia, 2019, 88, 422-447.	4.1	67
21	The characterization of nanosized nickel-zinc ferrites synthesized within reverse micelles of CTAB/1–hexanol/water microemulsion. Journal of Magnetism and Magnetic Materials, 2004, 284, 294-302.	1.0	65
22	Zeta-potential and Particle Size Analysis of Human Amelogenins. Journal of Dental Research, 2010, 89, 149-153.	2.5	65
23	Gene delivery using calcium phosphate nanoparticles: Optimization of the transfection process and the effects of citrate and poly(I -lysine) as additives. Journal of Colloid and Interface Science, 2016, 471, 48-58.	5.0	65
24	Hydroxyapatite as a biomaterial – a gift that keeps on giving. Drug Development and Industrial Pharmacy, 2020, 46, 1035-1062.	0.9	64
25	One ion to rule them all: the combined antibacterial, osteoinductive and anticancer properties of selenite-incorporated hydroxyapatite. Journal of Materials Chemistry B, 2017, 5, 1430-1445.	2.9	62
26	X-ray photoelectron and ion scattering spectroscopic surface analyses of amorphous and crystalline calcium phosphate nanoparticles with different chemical histories. Physical Chemistry Chemical Physics, 2020, 22, 5531-5547.	1.3	61
27	PEGylated silicon nanowire coated silica microparticles for drug delivery across intestinal epithelium. Biomaterials, 2012, 33, 1663-1672.	5.7	57
28	Multifunctional hydroxyapatite and poly(d,l-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol. Materials Science and Engineering C, 2013, 33, 943-950.	3.8	57
29	The Bone Building Blues: Self-hardening copper-doped calcium phosphate cement and its in vitro assessment against mammalian cells and bacteria. Materials Science and Engineering C, 2017, 79, 270-279.	3.8	55
30	Shape Effect in the Design of Nanowire-Coated Microparticles as Transepithelial Drug Delivery Devices. ACS Nano, 2012, 6, 7832-7841.	7.3	53
31	Dynamic light scattering and zeta potential of colloidal mixtures of amelogenin and hydroxyapatite in calcium and phosphate rich ionic milieus. Archives of Oral Biology, 2011, 56, 521-532.	0.8	52
32	Protecting healthcare workers during COVID-19 pandemic with nanotechnology: A protocol for a new device from Egypt. Journal of Infection and Public Health, 2020, 13, 1243-1246.	1.9	52
33	Factors influencing the drug release from calcium phosphate cements. Bioactive Materials, 2022, 7, 341-363.	8.6	52
34	Nanofibrous ε-polycaprolactone scaffolds containing Ag-doped magnetite nanoparticles: Physicochemical characterization and biological testing for wound dressing applications in vitro and in vivo. Bioactive Materials, 2021, 6, 2070-2088.	8.6	50
35	Nanotechnology in Dental Sciences: Moving towards a Finer Way of Doing Dentistry. Materials, 2010, 3, 1674-1691.	1.3	49
36	Simultaneous bactericidal and osteogenic effect of nanoparticulate calcium phosphate powders loaded with clindamycin on osteoblasts infected with Staphylococcus aureus. Materials Science and Engineering C, 2014, 37, 210-222.	3.8	49

#	Article	IF	CITATIONS
37	Physical and biological changes associated with the doping of carbonated hydroxyapatite/polycaprolactone core-shell nanofibers dually, with rubidium and selenite. Journal of Materials Research and Technology, 2020, 9, 3710-3723.	2.6	49
38	Osteogenic and antimicrobial nanoparticulate calcium phosphate and poly-(d,l-lactide-co-glycolide) powders for the treatment of osteomyelitis. Materials Science and Engineering C, 2013, 33, 3362-3373.	3.8	48
39	Tuning the composition of new brushite/vivianite mixed systems for superior heavy metal removal efficiency from contaminated waters. Journal of Water Process Engineering, 2020, 34, 101090.	2.6	48
40	Composites comprising cholesterol and carboxymethyl cellulose. Colloids and Surfaces B: Biointerfaces, 2008, 61, 250-261.	2.5	47
41	A mechanism for the formation of nanostructured NiZn ferrites via a microemulsion-assisted precipitation method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 266, 168-174.	2.3	46
42	ls there a relationship between solubility and resorbability of different calcium phosphate phases in vitro ?. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2157-2168.	1.1	46
43	Bisphosphonate-Functionalized Hydroxyapatite Nanoparticles for the Delivery of the Bromodomain Inhibitor JQ1 in the Treatment of Osteosarcoma. ACS Applied Materials & Interfaces, 2017, 9, 25887-25904.	4.0	46
44	Insights into the kinetics of thermally induced crystallization of amorphous calcium phosphate. Physical Chemistry Chemical Physics, 2018, 20, 29221-29235.	1.3	46
45	Hydroxyapatite as a Vehicle for the Selective Effect of Superparamagnetic Iron Oxide Nanoparticles against Human Glioblastoma Cells. ACS Applied Materials & Interfaces, 2017, 9, 39283-39302.	4.0	44
46	Amelogenin as a promoter of nucleation and crystal growth of apatite. Journal of Crystal Growth, 2011, 316, 106-117.	0.7	43
47	Phase composition control of calcium phosphate nanoparticles for tunable drug delivery kinetics and treatment of osteomyelitis. II. Antibacterial and osteoblastic response. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1427-1436.	2.1	43
48	A historical review of glassy carbon: Synthesis, structure, properties and applications. Carbon Trends, 2021, 5, 100116.	1.4	43
49	Why have nanotechnologies been underutilized in the global uprising against the coronavirus pandemic?. Nanomedicine, 2020, 15, 1719-1734.	1.7	42
50	Taking Hydroxyapatite-Coated Titanium Implants Two Steps Forward: Surface Modification Using Graphene Mesolayers and a Hydroxyapatite-Reinforced Polymeric Scaffold. ACS Biomaterials Science and Engineering, 2021, 7, 360-372.	2.6	42
51	Enzymatic processing of amelogenin during continuous crystallization of apatite. Journal of Materials Research, 2008, 23, 3184-3195.	1.2	40
52	When 1 + 1 > 2: Nanostructured composites for hard tissue engineering applications. Materials Science and Engineering C, 2015, 57, 434-451.	3.8	39
53	Preparation of Silica-Coated Lanthanum-Strontium Manganite Particles with Designable Curie Point, for Application in Hyperthermia Treatments. International Journal of Applied Ceramic Technology, 2006, 3, 134-143.	1.1	38
54	A new, simple, green, and one-pot four-component synthesis of bare and poly(α,γ,l-glutamic acid)-capped silver nanoparticles. Colloid and Polymer Science, 2012, 290, 221-231.	1.0	38

#	Article	IF	CITATIONS
55	Disordering the Disorder as the Route to a Higher Order: Incoherent Crystallization of Calcium Phosphate through Amorphous Precursors. Crystal Growth and Design, 2019, 19, 4340-4357.	1.4	37
56	Sic Parvis Magna: Manganese-Substituted Tricalcium Phosphate and Its Biophysical Properties. ACS Biomaterials Science and Engineering, 2019, 5, 6632-6644.	2.6	37
57	Uniform particles of pure and silica-coated cholesterol. Journal of Colloid and Interface Science, 2007, 315, 500-511.	5.0	36
58	Calcium Phosphate as a Key Material for Socially Responsible Tissue Engineering. Materials, 2016, 9, 434.	1.3	36
59	Insights into morphological nature of precipitation of cholesterol. Steroids, 2008, 73, 356-369.	0.8	35
60	Composite PLGA/AgNpPGA/AscH Nanospheres with Combined Osteoinductive, Antioxidative, and Antimicrobial Activities. ACS Applied Materials & amp; Interfaces, 2013, 5, 9034-9042.	4.0	35
61	Magnetic calcium phosphates nanocomposites for the intracellular hyperthermia of cancers of bone and brain. Nanomedicine, 2019, 14, 1267-1289.	1.7	35
62	Silica-coated lanthanum–strontium manganites for hyperthermia treatments. Materials Letters, 2006, 60, 2620-2622.	1.3	34
63	On Grounds of the Memory Effect in Amorphous and Crystalline Apatite: Kinetics of Crystallization and Biological Response. ACS Applied Materials & amp; Interfaces, 2018, 10, 14491-14508.	4.0	34
64	Gold is for the mistress, silver for the maid: Enhanced mechanical properties, osteoinduction and antibacterial activity due to iron doping of tricalcium phosphate bone cements. Materials Science and Engineering C, 2019, 94, 798-810.	3.8	34
65	Chitosan oligosaccharide lactate coated hydroxyapatite nanoparticles as a vehicle for the delivery of steroid drugs and the targeting of breast cancer cells. Journal of Materials Chemistry B, 2018, 6, 6957-6968.	2.9	33
66	Antibacterial and cell-friendly copper-substituted tricalcium phosphate ceramics for biomedical implant applications. Materials Science and Engineering C, 2021, 129, 112410.	3.8	33
67	Four novel co-precipitation procedures for the synthesis of lanthanum-strontium manganites. Materials & Design, 2007, 28, 667-672.	5.1	32
68	Empirical and theoretical insights into the structural effects of selenite doping in hydroxyapatite and the ensuing inhibition of osteoclasts. Materials Science and Engineering C, 2020, 117, 111257.	3.8	32
69	Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies. Materials Science and Engineering C, 2016, 68, 746-757.	3.8	31
70	Poly(d,l-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 1: A multifunctional system for controlled drug delivery. Colloids and Surfaces B: Biointerfaces, 2011, 82, 404-413.	2.5	30
71	Isn't self-assembly a misnomer? Multi-disciplinary arguments in favor of co-assembly. Advances in Colloid and Interface Science, 2008, 141, 37-47.	7.0	29
72	Nanomaterials and Nanotechnologies: Approaching the Crest of this Big Wave. Current Nanoscience, 2008, 4, 119-129.	0.7	29

#	Article	IF	CITATIONS
73	Mechanism of formation governs the mechanism of release of antibiotics from calcium phosphate nanopowders and cements in a drug-dependent manner. Journal of Materials Chemistry B, 2019, 7, 3982-3992.	2.9	28
74	Nanoparticulate drug delivery platforms for advancing bone infection therapies. Expert Opinion on Drug Delivery, 2014, 11, 1899-1912.	2.4	27
75	Bone Mineral Crystallinity Governs the Orchestration of Ossification and Resorption during Bone Remodeling. ACS Biomaterials Science and Engineering, 2019, 5, 3483-3498.	2.6	27
76	Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: In search of the key particle property. Biointerphases, 2019, 14, 031001.	0.6	26
77	Comparative molecular dynamics study of the receptor-binding domains in SARS-CoV-2 and SARS-CoV and the effects of mutations on the binding affinity. Journal of Biomolecular Structure and Dynamics, 2022, 40, 4662-4681.	2.0	26
78	Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor. Colloids and Surfaces B: Biointerfaces, 2016, 148, 629-639.	2.5	25
79	Hydrolysis of amelogenin by matrix metalloprotease-20 accelerates mineralization in vitro. Archives of Oral Biology, 2011, 56, 1548-1559.	0.8	24
80	Synthesis of lanthanum–strontium manganites by oxalate-precursor co-precipitation methods in solution and in reverse micellar microemulsion. Journal of Magnetism and Magnetic Materials, 2006, 303, 214-220.	1.0	23
81	Magnetic, microstructural and photoactivated antibacterial features of nanostructured Co–Zn ferrites of different chemical and phase compositions. Journal of Alloys and Compounds, 2021, 856, 157013.	2.8	23
82	COVID-19 infection and nanomedicine applications for development of vaccines and therapeutics: An overview and future perspectives based on polymersomes. European Journal of Pharmacology, 2021, 896, 173930.	1.7	23
83	High-Dose Vitamin C for Cancer Therapy. Pharmaceuticals, 2022, 15, 711.	1.7	23
84	Challenges for the Modern Science in its Descend Towards Nano Scale. Current Nanoscience, 2009, 5, 372-389.	0.7	22
85	Calcium phosphate nanoparticles: a future therapeutic platform for the treatment of osteomyelitis?. Therapeutic Delivery, 2013, 4, 643-645.	1.2	22
86	Altered self-assembly and apatite binding of amelogenin induced by N-terminal proline mutation. Archives of Oral Biology, 2011, 56, 331-336.	0.8	21
87	THEORETICAL AND PRACTICAL ASPECTS OF COLLOID SCIENCE AND SELF-ASSEMBLY PHENOMENA REVISITED. Reviews in Chemical Engineering, 2007, 23, .	2.3	19
88	Antimicrobial hydroxyapatite–gelatin–silica composite pastes with tunable setting properties. Journal of Materials Chemistry B, 2017, 5, 6065-6080.	2.9	19
89	Colloidal graphene oxide enhances the activity of a lipase and protects it from oxidative damage: Insights from physicochemical and molecular dynamics investigations. Journal of Colloid and Interface Science, 2020, 567, 285-299.	5.0	19
90	Synthesis and characterization of nanoparticulate niobium- and zinc-doped bioglass-ceramic/chitosan hybrids for dental applications. Journal of Sol-Gel Science and Technology, 2021, 97, 245-258.	1.1	19

#	Article	IF	CITATIONS
91	Pulsed laser deposition temperature effects on strontium-substituted hydroxyapatite thin films for biomedical implants. Cell Biology and Toxicology, 2020, 36, 537-551.	2.4	18
92	Physical, electrochemical and biological evaluations of spin-coated Îμ-polycaprolactone thin films containing alumina/graphene/carbonated hydroxyapatite/titania for tissue engineering applications. International Journal of Pharmaceutics, 2020, 585, 119502.	2.6	18
93	Nanomedicine for the poor: a lost cause or an idea whose time has yet to come?. Nanomedicine, 2021, 16, 1203-1218.	1.7	18
94	Thermal crystallization of amorphous calcium phosphate combined with citrate and fluoride doping: a novel route to produce hydroxyapatite bioceramics. Journal of Materials Chemistry B, 2021, 9, 4832-4845.	2.9	18
95	On Science of Metaphors and the Nature of Systemic Reasoning. World Futures, 2009, 65, 241-269.	0.8	17
96	Prospects and Pits on the Path of Biomimetics: The Case of Tooth Enamel. Journal of Biomimetics, Biomaterials, and Tissue Engineering, 2010, 8, 45-78.	0.7	17
97	Carriers for the tunable release of therapeutics: etymological classification and examples. Expert Opinion on Drug Delivery, 2016, 13, 1729-1741.	2.4	17
98	Gold nanoparticles conjugated with anti-CD133 monoclonal antibody and 5-fluorouracil chemotherapeutic agent as nanocarriers for cancer cell targeting. RSC Advances, 2021, 11, 16131-16141.	1.7	17
99	Does Translational Symmetry Matter on the Micro Scale? Fibroblastic and Osteoblastic Interactions with the Topographically Distinct Poly(ε-caprolactone)/Hydroxyapatite Thin Films. ACS Applied Materials & Interfaces, 2014, 6, 13209-13220.	4.0	16
100	Targeted magnetic separation of biomolecules and cells using earthicle-based ferrofluids. Nanoscale, 2019, 11, 11236-11253.	2.8	16
101	Waiting for Aï€Î±ï"αï‰: 250ÂYears Later. Foundations of Science, 2019, 24, 617-640.	0.4	16
102	On the Light Doves and Learning on Mistakes. Axiomathes, 2009, 19, 17-50.	0.3	14
103	Doxorubicin-loaded, pH-sensitive Albumin Nanoparticles for Lung Cancer Cell Targeting. Journal of Pharmaceutical Sciences, 2022, 111, 1187-1196.	1.6	14
104	Biomimetic precipitation of uniaxially grown calcium phosphate crystals from full-length human amelogenin sols. Journal of Bionic Engineering, 2011, 8, 114-121.	2.7	13
105	Earthicle: The Design of a Conceptually New Type of Particle. ACS Applied Materials & Interfaces, 2017, 9, 1305-1321.	4.0	13
106	Vibrational spectroscopic analysis of hydroxyapatite in HYP mice and individuals with X-linked hypophosphatemia. Therapeutic Advances in Chronic Disease, 2018, 9, 268-281.	1.1	13
107	Flipping the flipped: the co-creational classroom. Research and Practice in Technology Enhanced Learning, 2018, 13, 11.	1.9	13
108	Tricalcium phosphate cement supplemented with boron nitride nanotubes with enhanced biological properties. Materials Science and Engineering C, 2020, 114, 111044.	3.8	13

Vuκ Usκοκονιć

#	Article	IF	CITATIONS
109	Visualizing different crystalline states during the infrared imaging of calcium phosphates. Vibrational Spectroscopy, 2020, 108, 103045.	1.2	13
110	Amelogenin in Enamel Tissue Engineering. Advances in Experimental Medicine and Biology, 2015, 881, 237-254.	0.8	13
111	Surface Charge Effects Involved in the Control of Stability of Sols Comprising Uniform Cholesterol Particles. Materials and Manufacturing Processes, 2008, 23, 620-623.	2.7	12
112	Nonlinear oscillatory dynamics of the hardening of calcium phosphate bone cements. RSC Advances, 2017, 7, 40517-40532.	1.7	12
113	Tracking the pipeline: immunoinformatics and the COVID-19 vaccine design. Briefings in Bioinformatics, 2021, 22, .	3.2	12
114	Calcium Phosphate and Senescence of Orange Jubilees in the Summertime. ACS Applied Bio Materials, 2020, 3, 3770-3784.	2.3	12
115	Of sustainability, elephants and Prefab Sprouts. International Journal of Sustainable Society, 2008, 1, 85.	0.0	11
116	Revisiting the fundamentals in the design and control of nanoparticulate colloids in the frame of soft chemistry. Review Journal of Chemistry, 2013, 3, 271-303.	1.0	11
117	Population Effects of Calcium Phosphate Nanoparticles in <i>Drosophila melanogaster</i> : The Effects of Phase Composition, Crystallinity, and the Pathway of Formation. ACS Biomaterials Science and Engineering, 2017, 3, 2348-2357.	2.6	11
118	Crescit eundo : Nanotechnologies in preventive and regenerative medicine. , 2018, , xxi-xxv.		10
119	SYNTHESIS OF RELATIVELY HIGHLY MAGNETIC NANO-SIZED NiZn-FERRITE IN MICROEMULSION AT 45°C. Surface Review and Letters, 2005, 12, 97-100.	0.5	9
120	Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: mechanism of action. Biomedical Materials (Bristol), 2021, 16, 015018.	1.7	9
121	Co-creation of experiential qualities. Pragmatics and Cognition, 2011, 19, 562-589.	0.2	8
122	Colloids or powders: Which nanoparticle formulations do cells like more?. Colloids and Surfaces B: Biointerfaces, 2019, 181, 39-47.	2.5	8
123	Factors defining the stability of poly(lactide-co-glycolide) spheres for the sustained release of a cysteine protease inhibitor. International Journal of Pharmaceutics, 2020, 583, 119316.	2.6	8
124	A collection of micrographs: where science and art meet. Technoetic Arts, 2009, 7, 231-247.	0.0	7
125	Major Challenges for the Modern Chemistry in Particular and Science in General. Foundations of Science, 2010, 15, 303-344.	0.4	7
126	Nanoparticles and Gut Microbiota in Colorectal Cancer. Frontiers in Nanotechnology, 2021, 3, .	2.4	7

#	Article	IF	CITATIONS
127	Hydroxyapatite as a scavenger of reactive radiolysis species in graphene liquid cells for in situ electron microscopy. Nanotechnology, 2021, 32, 485707.	1.3	7
128	Exploration of potential inhibitors for SARSâ€CoVâ€2 Mpro considering its mutants via structureâ€based drug design, molecular docking, MD simulations, MM/PBSA, and DFT calculations. Biotechnology and Applied Biochemistry, 2023, 70, 439-457.	1.4	7
129	Morphological Study of Emulsion-Assisted Cholesterol Precipitation Processes. Molecular Crystals and Liquid Crystals, 2007, 474, 77-88.	0.4	6
130	Fruit Fly as a Model Organism for Blood-Brain Barrier Penetration and Infectious Disease in the Nanomedical Niche. Journal of Bionic Engineering, 2020, 17, 553-569.	2.7	6
131	RETHINKING ACTIVE LEARNING AS A PARADIGM OF OUR TIMES: TOWARDS POETICIZING AND HUMANIZING NATURAL SCIENCES IN THE AGE OF STEM. Journal of Materials Education, 2017, 39, 241-258.	1.0	6
132	Germanium-doped hydroxyapatite: Synthesis and characterization of a new substituted apatite. Ceramics International, 2022, 48, 27693-27702.	2.3	6
133	Mimicking the transit of nanoparticles through the body: when the path determines properties at the destination. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	5
134	CHEMICAL REACTIONS AS : THE USE OF METAPHOR IN MATERIALS SCIENCE EDUCATION. Journal of Materials Education, 2014, 36, 25-50.	1.0	5
135	On Holism and The Contextual Character of Natural Qualities. World Futures, 2012, 68, 406-429.	0.8	4
136	Biomineralization and biomimicry of tooth enamel. , 2013, , 20-44.		4
137	Effects of hydroxyapatite@poly-lactide-co-glycolide nanoparticles combined with Pb and Cd on liver and kidney parenchyma after the reconstruction of mandibular bone defects. Toxicology Research, 2019, 8, 287-296.	0.9	4
138	Health economics matters in the nanomaterial world: Cost-effectiveness of utilizing an inhalable antibacterial nanomaterial for the treatment of multidrug-resistant pneumonia. Technology in Society, 2021, 66, 101641.	4.8	4
139	Gold-embellished mixed-valence manganite as a smart, self-regulating magnetoplasmonic nanomaterial. Materials Chemistry and Physics, 2021, 271, 124870.	2.0	4
140	Celeste's Plight. Film International, 2019, 17, 69-88.	0.0	4
141	Toward functionalization without functional agents: An X-ray photoelectron spectroscopy study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129676.	2.3	4
142	On love in the realm of science. Technoetic Arts, 2012, 10, 359-374.	0.0	3
143	Nanotechnologies in preventive and regenerative medicine: Quo Vadis, Domine ?. , 2018, , 513-566.		3
144	Blowup of Accidental Images as a Passageway to Discovery: Insights into the Interaction between Hydroxyapatite Nanoparticles and Human Mesenchymal Stem Cells. Applied Sciences (Switzerland), 2020, 10, 8204.	1.3	3

Vuκ UskokoviÄ‡

#	Article	IF	CITATIONS
145	Earthicle and Its Discontents: A Historical Critical Review of Iron (Oxide) Particles Singly and Doubly Shelled with Silica and/or Carbon. ACS Earth and Space Chemistry, 2020, 4, 1843-1877.	1.2	3
146	Open-Ended, Metacognitive Conception of Classes for the Advancement of Nonconformity and Creative Thought. Open Education Studies, 2020, 2, 82-100.	0.4	3
147	Radioprotective Role of Vitamins C and E against the Gamma Ray-Induced Damage to the Chemical Structure of Bovine Serum Albumin. Antioxidants, 2021, 10, 1875.	2.2	3
148	Liposomes as immunological adjuvants and delivery systems in the development of tuberculosis vaccine: A review. Asian Pacific Journal of Tropical Medicine, 2022, 15, 7.	0.4	3
149	Astromimetics. Nanobiomedicine, 2018, 5, 184954351879434.	4.4	2
150	From molecules to nanoparticles to functional materials. Journal of the Serbian Chemical Society, 2020, 85, 1383-1403.	0.4	2
151	Extrapolating strategies for the scientific and technological development of underdeveloped societies from the examples of South Korea, Slovenia and Serbia. International Journal of Technology Management and Sustainable Development, 2011, 10, 125-145.	0.4	1
152	Celeste's Plight: What can film teach natural science?. Film International, 2019, 17, 69-88.	0.0	1
153	Being There. If the Pairing of the Birdwatchers Affects the Pairing of the Birds. Relations, 2022, 10, .	0.1	1
154	Materials extrusion-inspired engineering reflection of social pressure-induced environmental impact on academy community well-being. Work, 2021, 68, 333-352.	0.6	0
155	Merits of Aesthetics in Realm of Science. , 2013, , 1251-1259.		0
156	Punk Philosophy as a Path to the Summits of Ethos. Cultura International Journal of Philosophy of Culture and Axiology, 2016, 13, 29-47.	0.1	0
157	Merits of Aesthetics in Realm of Science. , 2020, , 1622-1630.		0