
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8739328/publications.pdf Version: 2024-02-01

ADAM SZARO

#	Article	IF	CITATIONS
1	Solar Wind Model Supported by Parker Solar Probe Observations During Faint Venusian Auroral Emission. Astrophysical Journal, 2022, 929, 45.	4.5	0
2	Direct First Parker Solar Probe Observation of the Interaction of Two Successive Interplanetary Coronal Mass Ejections in 2020 November. Astrophysical Journal, 2022, 930, 88.	4.5	14
3	Magnetic Field Observations in the Very Local Interstellar Medium by Voyagers 1 and 2. Astrophysical Journal, 2022, 932, 59.	4.5	11
4	Magnetic Fields Observed by Voyager 2 in the Heliosheath. Astrophysical Journal, 2021, 906, 119.	4.5	8
5	Magnetic Field and Plasma Density Observations of a Pressure Front by Voyager 1 during 2020 in the Very Local Interstellar Medium. Astrophysical Journal, 2021, 911, 61.	4.5	24
6	Oblique High Mach Number Heliospheric Shocks: The Role of α Particles. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028962.	2.4	1
7	A Quarter Century of <i>Wind</i> Spacecraft Discoveries. Reviews of Geophysics, 2021, 59, e2020RG000714.	23.0	52
8	Switchbacks as signatures of magnetic flux ropes generated by interchange reconnection in the corona. Astronomy and Astrophysics, 2021, 650, A2.	5.1	80
9	Comparative Analysis of the 2020 November 29 Solar Energetic Particle Event Observed by Parker Solar Probe. Astrophysical Journal, 2021, 920, 123.	4.5	12
10	<i>Parker Solar Probe</i> Enters the Magnetically Dominated Solar Corona. Physical Review Letters, 2021, 127, 255101.	7.8	104
11	The Streamer Blowout Origin of a Flux Rope and Energetic Particle Event Observed by Parker Solar Probe at 0.5 au. Astrophysical Journal, 2020, 897, 134.	4.5	14
12	The Heliospheric Current Sheet and Plasma Sheet during Parker Solar Probe's First Orbit. Astrophysical Journal Letters, 2020, 894, L19.	8.3	39
13	A Merged Search oil and Fluxgate Magnetometer Data Product for Parker Solar Probe FIELDS. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027813.	2.4	31
14	Voyager 1 and 2 Observations of a Change in the Nature of Magnetic Fluctuations in the VLISM with Increasing Distance from the Heliopause. Astronomical Journal, 2020, 160, 40.	4.7	17
15	Model Fitting of Wind Magnetic Clouds for the Period 2004 – 2006. Solar Physics, 2020, 295, 1.	2.5	5
16	Analysis of the Internal Structure of the Streamer Blowout Observed by the Parker Solar Probe During the First Solar Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 63.	7.7	34
17	Density Fluctuations in the Solar Wind Based on Type III Radio Bursts Observed by Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 57.	7.7	45
18	The Heliospheric Current Sheet in the Inner Heliosphere Observed by the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 47.	7.7	50

#	Article	IF	CITATIONS
19	Source and Propagation of a Streamer Blowout Coronal Mass Ejection Observed by the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 69.	7.7	29
20	Solar Energetic Particles Produced by a Slow Coronal Mass Ejection at â^1⁄40.25 au. Astrophysical Journal, Supplement Series, 2020, 246, 29.	7.7	35
21	Parker Solar Probe In Situ Observations of Magnetic Reconnection Exhausts during Encounter 1. Astrophysical Journal, Supplement Series, 2020, 246, 34.	7.7	65
22	Intermittency and q-Gaussian Distributions in the Magnetic Field of the Very Local Interstellar Medium (VLISM) Observed by Voyager 1 and Voyager 2. Astrophysical Journal Letters, 2020, 901, L2.	8.3	6
23	Unraveling the Internal Magnetic Field Structure of the Earth-directed Interplanetary Coronal Mass Ejections During 1995 – 2015. Solar Physics, 2019, 294, 1.	2.5	44
24	Statistical Survey of Coronal Mass Ejections and Interplanetary Type II Bursts. Astrophysical Journal, 2019, 882, 92.	4.5	14
25	Magnetic field and particle measurements made by Voyager 2 at and near the heliopause. Nature Astronomy, 2019, 3, 1007-1012.	10.1	69
26	Understanding the Role of <i>α</i> Particles in Oblique Heliospheric Shock Oscillations. Journal of Geophysical Research: Space Physics, 2019, 124, 2393-2405.	2.4	7
27	Alfvénic velocity spikes and rotational flows in the near-Sun solar wind. Nature, 2019, 576, 228-231.	27.8	311
28	Highly structured slow solar wind emerging from an equatorial coronal hole. Nature, 2019, 576, 237-242.	27.8	401
29	Interplanetary Type III Bursts and Electron Density Fluctuations in the Solar Wind. Astrophysical Journal, 2018, 857, 82.	4.5	38
30	Understanding the Internal Magnetic Field Configurations of ICMEs Using More than 20 Years of Wind Observations. Solar Physics, 2018, 293, 1.	2.5	115
31	Wind Magnetic Clouds for the Period 2013 – 2015: Model Fitting, Types, Associated Shock Waves, a Comparisons to Other Periods. Solar Physics, 2018, 293, 1.	nd _{2.5}	11
32	Revisiting the structure of lowâ€Mach number, lowâ€beta, quasiâ€perpendicular shocks. Journal of Geophysical Research: Space Physics, 2017, 122, 9115-9133.	2.4	52
33	A CIRCULAR-CYLINDRICAL FLUX-ROPE ANALYTICAL MODEL FOR MAGNETIC CLOUDS. Astrophysical Journal, 2016, 823, 27.	4.5	67
34	The FIELDS Instrument Suite for Solar Probe Plus. Space Science Reviews, 2016, 204, 49-82.	8.1	521
35	The Solar Probe Plus Mission: Humanity's First Visit to Our Star. Space Science Reviews, 2016, 204, 7-48.	8.1	821
36	Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus. Space Science Reviews, 2016, 204, 131-186.	8.1	439

#	Article	IF	CITATIONS
37	Predicting the magnetic vectors within coronal mass ejections arriving at Earth: 1. Initial architecture. Space Weather, 2015, 13, 374-385.	3.7	65
38	Wind Magnetic Clouds for 2010 – 2012: Model Parameter Fittings, Associated Shock Waves, and Comparisons to Earlier Periods. Solar Physics, 2015, 290, 2265-2290.	2.5	28
39	Shocklets, SLAMS, and fieldâ€aligned ion beams in the terrestrial foreshock. Journal of Geophysical Research: Space Physics, 2013, 118, 957-966.	2.4	60
40	Electromagnetic waves and electron anisotropies downstream of supercritical interplanetary shocks. Journal of Geophysical Research: Space Physics, 2013, 118, 5-16.	2.4	67
41	Magnetic field turbulence spectra observed by the wind spacecraft. AIP Conference Proceedings, 2013, ,	0.4	10
42	INNER HELIOSPHERIC EVOLUTION OF A "STEALTH―CME DERIVED FROM MULTI-VIEW IMAGING AND MULTIPOINT IN SITU OBSERVATIONS. I. PROPAGATION TO 1 AU. Astrophysical Journal, 2013, 779, 55.	4.5	48
43	Observations of electromagnetic whistler precursors at supercritical interplanetary shocks. Geophysical Research Letters, 2012, 39, .	4.0	79
44	Remote and in situ observations of an unusual Earthâ€directed coronal mass ejection from multiple viewpoints. Journal of Geophysical Research, 2012, 117, .	3.3	86
45	Solar energetic electron probes of magnetic cloud field line lengths. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	42
46	THE SOLAR ORIGIN OF SMALL INTERPLANETARY TRANSIENTS. Astrophysical Journal, 2011, 734, 7.	4.5	89
47	Magnetic Clouds at/near the 2007 – 2009 Solar Minimum: Frequency of Occurrence and Some Unusu Properties. Solar Physics, 2011, 274, 345-360.	al 2.5	42
48	Largeâ€amplitude electrostatic waves observed at a supercritical interplanetary shock. Journal of Geophysical Research, 2010, 115, .	3.3	77
49	Multispacecraft observations of interplanetary shock shapes on the scales of the Earth's magnetosphere. Journal of Geophysical Research, 2010, 115, .	3.3	15
50	Lowâ€frequency whistler waves and shocklets observed at quasiâ€perpendicular interplanetary shocks. Journal of Geophysical Research, 2009, 114, .	3.3	76
51	Asymmetric shear flow effects on magnetic field configuration within oppositely directed solar wind reconnection exhausts. Journal of Geophysical Research, 2009, 114, .	3.3	19
52	The STEREO/IMPACT Magnetic Field Experiment. Space Science Reviews, 2008, 136, 203-226.	8.1	209
53	Navigating through SPASE to heliospheric and magnetospheric data. Earth Science Informatics, 2008, 1, 35-42.	3.2	8
54	Modified "Rankineâ€Hugoniot―shock fitting technique: Simultaneous solution for shock normal and speed. Journal of Geophysical Research, 2008, 113, .	3.3	35

#	Article	IF	CITATIONS
55	Bifurcated current sheets produced by magnetic reconnection in the solar wind. Journal of Geophysical Research, 2008, 113, .	3.3	76
56	Prevalence of magnetic reconnection at small field shear angles in the solar wind. Geophysical Research Letters, 2007, 34, .	4.0	81
57	Physics-based tests to identify the accuracy of solar wind ion measurements: A case study with the Wind Faraday Cups. Journal of Geophysical Research, 2006, 111, .	3.3	115
58	A summary of WIND magnetic clouds for years 1995-2003: model-fitted parameters, associated errors and classifications. Annales Geophysicae, 2006, 24, 215-245.	1.6	171
59	Three-dimensional position and shape of the bow shock and their variation with upstream Mach numbers and interplanetary magnetic field orientation. Journal of Geophysical Research, 2005, 110, .	3.3	79
60	Bow shock's geometry at the magnetospheric flanks. Journal of Geophysical Research, 2004, 109, .	3.3	15
61	Profile of an Average Magnetic Cloud at 1 au for the Quiet Solar Phase: Wind Observations. Solar Physics, 2003, 212, 425-444.	2.5	64
62	A comparison of IMP 8 observed bow shock positions with model predictions. Journal of Geophysical Research, 2003, 108, .	3.3	36
63	Earth's bow shock and magnetopause in the case of a field-aligned upstream flow: Observation and model comparison. Journal of Geophysical Research, 2003, 108, .	3.3	52
64	The Transition of Interplanetary Shocks through the Magnetosheath. AIP Conference Proceedings, 2003, , .	0.4	7
65	High time resolution observations of magnetospheric disturbances during auroral activity. Geophysical Monograph Series, 2003, , 45-54.	0.1	0
66	Wind observations of foreshock cavities: A case study. Journal of Geophysical Research, 2002, 107, SMP 4-1.	3.3	103
67	Solar wind preconditioning in the flank foreshock: IMP 8 observations. Journal of Geophysical Research, 2001, 106, 21675-21688.	3.3	40
68	Radio-rich solar eruptive events. Geophysical Research Letters, 2000, 27, 1427-1430.	4.0	87
69	Fast and Slow Flows in the Solar Wind Near the Ecliptic at 1 AU?. Space Science Reviews, 1999, 87, 137-140.	8.1	20
70	Magnetohydrodynamic modeling of the solar corona during Whole Sun Month. Journal of Geophysical Research, 1999, 104, 9809-9830.	3.3	282
71	The heliospheric current sheet on small scale. , 1999, , .		8
72	Crossing the Heliospheric Current Sheet. , 1999, , 231-237.		2

#	Article	IF	CITATIONS
73	A magnetic cloud containing prominence material: January 1997. Journal of Geophysical Research, 1998, 103, 277-285.	3.3	251
74	Timing accuracy for the simple planar propagation of magnetic field structures in the solar wind. Geophysical Research Letters, 1998, 25, 2509-2512.	4.0	107
75	The Wind magnetic cloud and events of October 18–20, 1995: Interplanetary properties and as triggers for geomagnetic activity. Journal of Geophysical Research, 1997, 102, 14049-14063.	3.3	140
76	A case study of oppositely propagating Alfvénic fluctuations in the solar wind and magnetosheath. Geophysical Research Letters, 1997, 24, 3133-3136.	4.0	22
77	A two-stream, four-sector, recurrence pattern: Implications from WIND for the 22-year geomagnetic activity cycle. Geophysical Research Letters, 1996, 23, 1275-1278.	4.0	19
78	Large-scale properties and solar connection of the heliospheric current and plasma sheets: WIND observations. Geophysical Research Letters, 1996, 23, 1199-1202.	4.0	28
79	The subsolar magnetosheath and magnetopause for high solar wind ram pressure: WIND observations. Geophysical Research Letters, 1996, 23, 1279-1282.	4.0	48
80	Magnetic cloud-bow shock interaction: WIND and IMP-8 observations. Geophysical Research Letters, 1996, 23, 1195-1198.	4.0	15
81	Near-simultaneous bow shock crossings by WIND and IMP 8 on December 1, 1994. Geophysical Research Letters, 1996, 23, 1207-1210.	4.0	29
82	Analysis of Magnetotail Flux Ropes with Strong Core Fields: ISEE 3 Observations. Journal of Geoelectricity, 1996, 48, 589-601.	0.9	22
83	Coincident 1.3-year periodicities in theapgeomagnetic index and the solar wind. Geophysical Research Letters, 1995, 22, 3001-3004.	4.0	70
84	An improved solution to the "Rankine-Hugoniot―problem. Journal of Geophysical Research, 1994, 99, 14737.	3.3	72