
Jose Manuel Rodriguez Nogales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8739306/publications.pdf

Version: 2024-02-01

Jose Manuel Rodriguez

#	Article	IF	CITATIONS
1	Volatile composition and sensory properties of wines from vineyards affected by iron chlorosis. Food Chemistry, 2022, 369, 130850.	8.2	13
2	Optimization of a Simultaneous Enzymatic Hydrolysis to Obtain a High-Glucose Slurry from Bread Waste. Foods, 2022, 11, 1793.	4.3	8
3	Aroma composition of Tempranillo grapes as affected by iron deficiency chlorosis and vine water status. Scientia Agricola, 2021, 78, .	1.2	7
4	Relationships between chlorophyll content of vine leaves, predawn leaf water potential at veraison, and chemical and sensory attributes of wine. Journal of the Science of Food and Agriculture, 2020, 100, 5251-5259.	3.5	2
5	Evaluating the influence of simultaneous inoculation of SiO2-alginate encapsulated bacteria and yeasts on volatiles, amino acids, biogenic amines and sensory profile of red wine with lysozyme addition. Food Chemistry, 2020, 327, 126920.	8.2	6
6	Malolactic fermentation induced by silicaâ€alginate encapsulated Oenococcus oeni with different inoculation regimes. Australian Journal of Grape and Wine Research, 2019, 25, 165-172.	2.1	2
7	Influence of water regime on yield components, must composition and wine volatile compounds of <i>Vitis vinifera</i> cv. Verdejo. Australian Journal of Grape and Wine Research, 2019, 25, 83-91.	2.1	21
8	Effect of stressful malolactic fermentation conditions on the operational and chemical stability of silica-alginate encapsulated Oenococcus oeni. Food Chemistry, 2019, 276, 643-651.	8.2	9
9	Testing SensoGraph, a geometric approach for fast sensory evaluation. Food Quality and Preference, 2019, 72, 1-9.	4.6	10
10	Research progress in coating techniques of alginate gel polymer for cell encapsulation. Carbohydrate Polymers, 2017, 170, 1-14.	10.2	89
11	Highly Efficient Malolactic Fermentation of Red Wine Using Encapsulated Bacteria in a Robust Biocomposite of Silica-Alginate. Journal of Agricultural and Food Chemistry, 2017, 65, 5188-5197.	5.2	14
12	Silica-alginate-encapsulated bacteria to enhance malolactic fermentation performance in a stressful environment. Australian Journal of Grape and Wine Research, 2017, 23, 342-349.	2.1	10
13	Ultrasonic monitoring of malolactic fermentation in red wines. Ultrasonics, 2014, 54, 1575-1580.	3.9	31
14	Analysis of Grape Proteins from Wines by Perfusion Reversed-Phase High-Performance Liquid Chromatography. Food Analytical Methods, 2013, 6, 1234-1243.	2.6	2
15	Immobilization of <i>Oenococcus oeni</i> in lentikats® to develop malolactic fermentation in wines. Biotechnology Progress, 2013, 29, 60-65.	2.6	17
16	Antioxidant Properties of Sparkling Wines Produced with β lucanases and Commercial Yeast Preparations. Journal of Food Science, 2012, 77, C1005-10.	3.1	24
17	Effect of the addition of β-glucanases and commercial yeast preparations on the chemical and sensorial characteristics of traditional sparkling wine. European Food Research and Technology, 2012, 235, 729-744.	3.3	22
18	Development of a rapid method for the determination of the antioxidant capacity in cereal and legume milling products using the radical cation DMPD+. Food Chemistry, 2011, 129, 1800-1805.	8.2	7

Jose Manuel Rodriguez

#	Article	IF	CITATIONS
19	Effects of somatic cells on the protein profile of hard ovine cheese produced from different breeds. Journal of Dairy Research, 2011, 78, 279-286.	1.4	2
20	Improved methodology for the characterisation of transgenic Bt-11 maize cultivars using RP-HPLC profiles of albumin, globulin, prolamin, and glutelin protein fractions and chemometric analysis. Food Chemistry, 2010, 120, 1229-1237.	8.2	9
21	Effect of somatic cell counts on ewes' milk protein profile and cheese-making properties in different sheep breeds reared in Spain. Journal of Dairy Research, 2009, 76, 210-215.	1.4	14
22	Characterisation and classification of Spanish Verdejo young white wines by volatile and sensory analysis with chemometric tools. Journal of the Science of Food and Agriculture, 2009, 89, 1927-1935.	3.5	34
23	Ultrarapid Quantitation of Maize Proteins by Perfusion and Monolithic Reversed-Phase High-Performance Liquid Chromatography. Journal of Agricultural and Food Chemistry, 2009, 57, 3014-3021.	5.2	4
24	Pectin hydrolysis in a free enzyme membrane reactor: An approach to the wine and juice clarification. Food Chemistry, 2008, 107, 112-119.	8.2	32
25	Estimation of the percentage of transgenic Bt maize in maize flour mixtures using perfusion and monolithic reversed-phase high-performance liquid chromatography and chemometric tools. Food Chemistry, 2008, 111, 483-489.	8.2	18
26	Multivariate optimisation of a capillary electrophoretic method for the separation of glutenins. Application to quantitative analysis of the endosperm storage proteins in wheat. Food Chemistry, 2008, 108, 287-296.	8.2	18
27	Proteolysis and texture of hard ewes' milk cheese during ripening as affected by somatic cell counts. Journal of Dairy Research, 2007, 74, 127-136.	1.4	23
28	Application of electrophoretic and chemometric analysis to predict the bovine, ovine and caprine milk percentages in Panela cheese, an unripened cheese. Food Control, 2007, 18, 580-586.	5.5	18
29	Influence of Somatic Cell Count and Breed on Capillary Electrophoretic Protein Profiles of Ewes' Milk: A Chemometric Study. Journal of Dairy Science, 2007, 90, 3187-3196.	3.4	13
30	Characterization of Protein Fractions from Bt-Transgenic and Non-transgenic Maize Varieties Using Perfusion and Monolithic RP-HPLC. Maize Differentiation by Multivariate Analysis. Journal of Agricultural and Food Chemistry, 2007, 55, 3835-3842.	5.2	23
31	Experimental design and response surface modeling applied for the optimisation of pectin hydrolysis by enzymes from A. niger CECT 2088. Food Chemistry, 2007, 101, 634-642.	8.2	29
32	Monolithic Supports for the Characterization of Commercial Maize Products Based on Their Chromatographic Profile. Application of Experimental Design and Classification Techniques. Journal of Agricultural and Food Chemistry, 2006, 54, 1173-1179.	5.2	14
33	Analysis of European and North American Maize Inbred and Hybrid Lines by Monolithic and Perfusion Reversed-Phase High-Performance Chromatography and Multivariate Analysis. Journal of Agricultural and Food Chemistry, 2006, 54, 8702-8709.	5.2	14
34	Enhancement of transglutaminase-induced protein cross-linking by preheat treatment of cows' milk: A statistical approach. International Dairy Journal, 2006, 16, 26-32.	3.0	44
35	A novel approach to develop β-galactosidase entrapped in liposomes in order to prevent an immediate hydrolysis of lactose in milk. International Dairy Journal, 2006, 16, 354-360.	3.0	40
36	Approach to the quantification of milk mixtures by partial least-squares, principal component and multiple linear regression techniques. Food Chemistry, 2006, 98, 782-789.	8.2	29

Jose Manuel Rodriguez

#	Article	IF	CITATIONS
37	Development of a perfusion reversed-phase high performance liquid chromatography method for the characterisation of maize products using multivariate analysis. Journal of Chromatography A, 2006, 1104, 91-99.	3.7	19
38	Effect of preheat treatment on the transglutaminase-catalyzed cross-linking of goat milk proteins. Process Biochemistry, 2006, 41, 430-437.	3.7	25
39	High-performance liquid chromatography and capillary electrophoresis for the analysis of maize proteins. Journal of Separation Science, 2006, 29, 197-210.	2.5	30
40	Biosynthesis of ethyl butyrate using immobilized lipase: a statistical approach. Process Biochemistry, 2005, 40, 63-68.	3.7	70
41	Operational Stability and Kinetic Study of a Membrane Reactor with Pectinases from <i>Aspergillus niger</i> . Journal of Food Science, 2005, 70, E104-E108.	3.1	10
42	Stability and catalytic kinetics of microencapsulated β-galactosidase in liposomes prepared by the dehydration–rehydration method. Journal of Molecular Catalysis B: Enzymatic, 2005, 33, 15-21.	1.8	27
43	Enzymatic cross-linking of ewe's milk proteins by transglutaminase. European Food Research and Technology, 2005, 221, 692-699.	3.3	11
44	Kinetic behaviour and thermal inactivation of pectinlyase used in food processing. International Journal of Food Science and Technology, 2004, 39, 631-639.	2.7	42
45	Application of experimental design to the formulation of glucose oxidase encapsulation by liposomes. Journal of Chemical Technology and Biotechnology, 2004, 79, 700-705.	3.2	12
46	Kinetic behaviour and stability of glucose oxidase entrapped in liposomes. Journal of Chemical Technology and Biotechnology, 2004, 79, 72-78.	3.2	21