
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8739177/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources. ChemSusChem, 2009, 2, 796-854.	3.6	2,178
2	Direct Capture of CO ₂ from Ambient Air. Chemical Reviews, 2016, 116, 11840-11876.	23.0	1,455
3	Designing Adsorbents for CO ₂ Capture from Flue Gas-Hyperbranched Aminosilicas Capable of Capturing CO ₂ Reversibly. Journal of the American Chemical Society, 2008, 130, 2902-2903.	6.6	703
4	A Highâ€Performance Gasâ€Separation Membrane Containing Submicrometerâ€Sized Metal–Organic Framework Crystals. Angewandte Chemie - International Edition, 2010, 49, 9863-9866.	7.2	603
5	Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science, 2014, 345, 72-75.	6.0	602
6	High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules. Energy and Environmental Science, 2011, 4, 444-452.	15.6	446
7	Organic-functionalized molecular sieves as shape-selective catalysts. Nature, 1998, 393, 52-54.	13.7	412
8	Application of Amine-Tethered Solid Sorbents for Direct CO ₂ Capture from the Ambient Air. Environmental Science & Contended and the second	4.6	385
9	Nanoscale design to enable the revolution in renewable energy. Energy and Environmental Science, 2009, 2, 559.	15.6	348
10	Amine-oxide hybrid materials for acid gas separations. Journal of Materials Chemistry, 2011, 21, 15100.	6.7	333
11	Using nature's blueprint to expand catalysis with Earth-abundant metals. Science, 2020, 369, .	6.0	306
12	Amineâ€Tethered Solid Adsorbents Coupling High Adsorption Capacity and Regenerability for CO ₂ Capture From Ambient Air. ChemSusChem, 2011, 4, 628-635.	3.6	281
13	Modification of the Mg/DOBDC MOF with Amines to Enhance CO ₂ Adsorption from Ultradilute Gases. Journal of Physical Chemistry Letters, 2012, 3, 1136-1141.	2.1	273
14	Synthesis–Structure–Property Relationships for Hyperbranched Aminosilica CO ₂ Adsorbents. Advanced Functional Materials, 2009, 19, 3821-3832.	7.8	263
15	Mesoporous Alumina-Supported Amines as Potential Steam-Stable Adsorbents for Capturing CO ₂ from Simulated Flue Gas and Ambient Air. Energy & Fuels, 2011, 25, 5528-5537.	2.5	252
16	Stability of Zeolites in Hot Liquid Water. Journal of Physical Chemistry C, 2010, 114, 19582-19595.	1.5	246
17	Highly accessible catalytic sites on recyclable organosilane-functionalized magnetic nanoparticles: An alternative to functionalized porous silica catalysts. Journal of Molecular Catalysis A, 2006, 253, 123-131.	4.8	243
18	Depolymerization and Hydrodeoxygenation of Switchgrass Lignin with Formic Acid. ChemSusChem, 2012, 5, 667-675.	3.6	234

#	Article	IF	CITATIONS
19	CO ₂ Capture from Dilute Gases as a Component of Modern Global Carbon Management. Annual Review of Chemical and Biomolecular Engineering, 2011, 2, 31-52.	3.3	227
20	Acid atalyzed Conversion of Sugars and Furfurals in an Ionicâ€Liquid Phase. ChemSusChem, 2009, 2, 665-671.	3.6	226
21	Amine–Oxide Hybrid Materials for CO ₂ Capture from Ambient Air. Accounts of Chemical Research, 2015, 48, 2680-2687.	7.6	222
22	SO _{<i>x</i>} /NO _{<i>x</i>} Removal from Flue Gas Streams by Solid Adsorbents: A Review of Current Challenges and Future Directions. Energy & Fuels, 2015, 29, 5467-5486.	2.5	213
23	Direct Air Capture of CO ₂ Using Amine Functionalized MIL-101(Cr). ACS Sustainable Chemistry and Engineering, 2016, 4, 5761-5768.	3.2	210
24	Strong evidence of solution-phase catalysis associated with palladium leaching from immobilized thiols during Heck and Suzuki coupling of aryl iodides, bromides, and chlorides. Journal of Catalysis, 2007, 251, 80-93.	3.1	207
25	Dramatic Enhancement of CO ₂ Uptake by Poly(ethyleneimine) Using Zirconosilicate Supports. Journal of the American Chemical Society, 2012, 134, 10757-10760.	6.6	205
26	Mizorokiâ~'Heck Coupling Using Immobilized Molecular Precatalysts:Â Leaching Active Species from Pd Pincers, Entrapped Pd Salts, and Pd NHC Complexes. Inorganic Chemistry, 2007, 46, 1865-1875.	1.9	203
27	Hybrid Zeolitic Imidazolate Frameworks: Controlling Framework Porosity and Functionality by Mixed-Linker Synthesis. Chemistry of Materials, 2012, 24, 1930-1936.	3.2	200
28	Steam‣tripping for Regeneration of Supported Amineâ€Based CO ₂ Adsorbents. ChemSusChem, 2010, 3, 899-903.	3.6	192
29	Highly Tunable Molecular Sieving and Adsorption Properties of Mixed-Linker Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society, 2015, 137, 4191-4197.	6.6	192
30	Toward Benchmarking in Catalysis Science: Best Practices, Challenges, and Opportunities. ACS Catalysis, 2016, 6, 2590-2602.	5.5	190
31	Rational Approach to Polymer-Supported Catalysts: Synergy between Catalytic Reaction Mechanism and Polymer Design. Accounts of Chemical Research, 2008, 41, 1153-1165.	7.6	189
32	Effect of Amine Surface Coverage on the Co-Adsorption of CO ₂ and Water: Spectral Deconvolution of Adsorbed Species. Journal of Physical Chemistry Letters, 2014, 5, 4194-4200.	2.1	189
33	Expanding the Utility of One-Pot Multistep Reaction Networks through Compartmentation and Recovery of the Catalyst. Angewandte Chemie - International Edition, 2006, 45, 2209-2212.	7.2	180
34	Role of Amine Structure on Carbon Dioxide Adsorption from Ultradilute Gas Streams such as Ambient Air. ChemSusChem, 2012, 5, 2058-2064.	3.6	180
35	Continuous Polycrystalline Zeolitic Imidazolate Frameworkâ€90 Membranes on Polymeric Hollow Fibers. Angewandte Chemie - International Edition, 2012, 51, 10615-10618.	7.2	179
36	Poly(allylamine)–Mesoporous Silica Composite Materials for CO ₂ Capture from Simulated Flue Gas or Ambient Air. Industrial & Engineering Chemistry Research, 2011, 50, 14203-14210.	1.8	175

#	Article	IF	CITATIONS
37	Silica and polymer-tethered Pd?SCS-pincer complexes: evidence for precatalyst decomposition to form soluble catalytic species in Mizoroki?Heck chemistry. Journal of Catalysis, 2004, 226, 101-110.	3.1	173
38	Hollow Fiber Adsorbents for CO ₂ Removal from Flue Gas. Industrial & Engineering Chemistry Research, 2009, 48, 7314-7324.	1.8	172
39	Sonication-induced Ostwald ripening of ZIF-8 nanoparticles and formation of ZIF-8/polymer composite membranes. Microporous and Mesoporous Materials, 2012, 158, 292-299.	2.2	171
40	Tuning Cooperativity by Controlling the Linker Length of Silica-Supported Amines in Catalysis and CO ₂ Capture. Journal of the American Chemical Society, 2012, 134, 13950-13953.	6.6	165
41	Systems Design and Economic Analysis of Direct Air Capture of CO ₂ through Temperature Vacuum Swing Adsorption Using MIL-101(Cr)-PEI-800 and mmen-Mg ₂ (dobpdc) MOF Adsorbents. Industrial & Engineering Chemistry Research, 2017, 56, 750-764.	1.8	161
42	Toward Single-Site Functional MaterialsPreparation of Amine-Functionalized Surfaces Exhibiting Site-Isolated Behavior. Chemistry of Materials, 2003, 15, 1132-1139.	3.2	159
43	Oxidative Degradation of Aminosilica Adsorbents Relevant to Postcombustion CO ₂ Capture. Energy & Fuels, 2011, 25, 2416-2425.	2.5	154
44	Investigations into the Stability of Tethered Palladium(II) Pincer Complexes during Heck Catalysis. Organometallics, 2005, 24, 4351-4361.	1.1	147
45	Cooperative Catalysis with Acid–Base Bifunctional Mesoporous Silica: Impact of Grafting and Co-condensation Synthesis Methods on Material Structure and Catalytic Properties. Chemistry of Materials, 2012, 24, 2433-2442.	3.2	146
46	Ionic-Liquid-Phase Hydrolysis of Pine Wood. Industrial & Engineering Chemistry Research, 2009, 48, 1277-1286.	1.8	144
47	Structural Changes of Silica Mesocellular Foam Supported Amine-Functionalized CO ₂ Adsorbents Upon Exposure to Steam. ACS Applied Materials & Interfaces, 2010, 2, 3363-3372.	4.0	144
48	On the Stability and Recyclability of Supported Metal–Ligand Complex Catalysts: Myths, Misconceptions and Critical Research Needs. Topics in Catalysis, 2010, 53, 942-952.	1.3	143
49	Dilute Acid Hydrolysis of Loblolly Pine: A Comprehensive Approach. Industrial & Engineering Chemistry Research, 2008, 47, 7131-7140.	1.8	141
50	Synergy between Ceria Oxygen Vacancies and Cu Nanoparticles Facilitates the Catalytic Conversion of CO ₂ to CO under Mild Conditions. ACS Catalysis, 2018, 8, 12056-12066.	5.5	137
51	CO2 capture via adsorption in amine-functionalized sorbents. Current Opinion in Chemical Engineering, 2016, 12, 82-90.	3.8	132
52	Linking CO ₂ Sorption Performance to Polymer Morphology in Aminopolymer/Silica Composites through Neutron Scattering. Journal of the American Chemical Society, 2015, 137, 11749-11759.	6.6	131
53	Direct CO ₂ Capture from Air using Poly(ethylenimine)-Loaded Polymer/Silica Fiber Sorbents. ACS Sustainable Chemistry and Engineering, 2019, 7, 5264-5273.	3.2	131
54	Toward Single-Site, Immobilized Molecular Catalysts:  Site-Isolated Ti Ethylene Polymerization Catalysts Supported on Porous Silica. Journal of the American Chemical Society, 2004, 126, 3052-3053.	6.6	130

#	Article	IF	CITATIONS
55	Important Roles of Enthalpic and Entropic Contributions to CO ₂ Capture from Simulated Flue Gas and Ambient Air Using Mesoporous Silica Grafted Amines. Journal of the American Chemical Society, 2014, 136, 13170-13173.	6.6	130
56	Ring-Expanding Olefin Metathesis:Â A Route to Highly Active Unsymmetrical Macrocyclic Oligomeric Co-Salen Catalysts for the Hydrolytic Kinetic Resolution of Epoxides. Journal of the American Chemical Society, 2007, 129, 1105-1112.	6.6	127
57	Aminosilane-Grafted Polymer/Silica Hollow Fiber Adsorbents for CO ₂ Capture from Flue Gas. ACS Applied Materials & Interfaces, 2013, 5, 3921-3931.	4.0	127
58	Facet-Specific Stability of ZIF-8 in the Presence of Acid Gases Dissolved in Aqueous Solutions. Chemistry of Materials, 2016, 28, 6960-6967.	3.2	127
59	Best Practices in Pursuit of Topics in Heterogeneous Electrocatalysis. ACS Catalysis, 2017, 7, 6392-6393.	5.5	126
60	Tuning acid–base cooperativity to create next generation silica-supported organocatalysts. Journal of Catalysis, 2013, 308, 60-72.	3.1	125
61	ZIF-8 Membranes via Interfacial Microfluidic Processing in Polymeric Hollow Fibers: Efficient Propylene Separation at Elevated Pressures. ACS Applied Materials & Interfaces, 2016, 8, 25337-25342.	4.0	125
62	Tunable CO ₂ Adsorbents by Mixed-Linker Synthesis and Postsynthetic Modification of Zeolitic Imidazolate Frameworks. Journal of Physical Chemistry C, 2013, 117, 8198-8207.	1.5	123
63	Elucidation of Surface Species through inâ€Situ FTIR Spectroscopy of Carbon Dioxide Adsorption on Amineâ€Grafted SBAâ€i 5. ChemSusChem, 2017, 10, 266-276.	3.6	122
64	Enhanced CO ₂ Adsorption over Polymeric Amines Supported on Heteroatomâ€Incorporated SBAâ€15 Silica: Impact of Heteroatom Type and Loading on Sorbent Structure and Adsorption Performance. Chemistry - A European Journal, 2012, 18, 16649-16664.	1.7	118
65	Facile High-Yield Solvothermal Deposition of Inorganic Nanostructures on Zeolite Crystals for Mixed Matrix Membrane Fabrication. Journal of the American Chemical Society, 2009, 131, 14662-14663.	6.6	115
66	Design of Aminopolymer Structure to Enhance Performance and Stability of CO ₂ Sorbents: Poly(propylenimine) vs Poly(ethylenimine). Journal of the American Chemical Society, 2017, 139, 3627-3630.	6.6	115
67	Aminopolymer–Silica Composite-Supported Pd Catalysts for Selective Hydrogenation of Alkynes. ACS Catalysis, 2013, 3, 1700-1708.	5.5	114
68	Spacing and Site Isolation of Amine Groups in 3-Aminopropyl-Grafted Silica Materials:  The Role of Protecting Groups. Chemistry of Materials, 2006, 18, 5022-5032.	3.2	111
69	Stability of Supported Amine Adsorbents to SO ₂ and NO _{<i>x</i>} in Postcombustion CO ₂ Capture. 1. Single-Component Adsorption. Industrial & Engineering Chemistry Research, 2013, 52, 12192-12201.	1.8	111
70	Role of Additives in Composite PEI/Oxide CO ₂ Adsorbents: Enhancement in the Amine Efficiency of Supported PEI by PEG in CO ₂ Capture from Simulated Ambient Air. ACS Applied Materials & Interfaces, 2015, 7, 24748-24759.	4.0	111
71	Propane dehydrogenation catalyzed by gallosilicate MFI zeolites with perturbed acidity. Journal of Catalysis, 2017, 345, 113-123.	3.1	111
72	Controlling the Density of Amine Sites on Silica Surfaces Using Benzyl Spacers. Langmuir, 2006, 22, 2676-2681.	1.6	108

#	Article	IF	CITATIONS
73	Thermal, Oxidative and CO ₂ Induced Degradation of Primary Amines Used for CO ₂ Capture: Effect of Alkyl Linker on Stability. Journal of Physical Chemistry C, 2014, 118, 12302-12311.	1.5	103
74	Fluidic Processing of Highâ€Performance ZIFâ€8 Membranes on Polymeric Hollow Fibers: Mechanistic Insights and Microstructure Control. Advanced Functional Materials, 2016, 26, 5011-5018.	7.8	98
75	Dynamics of CO ₂ Adsorption on Amine Adsorbents. 2. Insights Into Adsorbent Design. Industrial & Engineering Chemistry Research, 2012, 51, 15153-15162.	1.8	97
76	Amine-Functionalized Porous Silicas as Adsorbents for Aldehyde Abatement. ACS Applied Materials & Interfaces, 2013, 5, 5569-5577.	4.0	97
77	Oxidative Dehydrogenation of Propane to Propylene with Soft Oxidants via Heterogeneous Catalysis. ACS Catalysis, 2021, 11, 2182-2234.	5.5	97
78	Highly dispersed palladium nanoparticles on ultra-porous silica mesocellular foam for the catalytic decarboxylation of stearic acid. Microporous and Mesoporous Materials, 2010, 132, 174-180.	2.2	96
79	Steam Induced Structural Changes of a Poly(ethylenimine) Impregnated γ-Alumina Sorbent for CO ₂ Extraction from Ambient Air. ACS Applied Materials & Interfaces, 2014, 6, 9245-9255.	4.0	96
80	Propane Dehydrogenation over Alumina-Supported Iron/Phosphorus Catalysts: Structural Evolution of Iron Species Leading to High Activity and Propylene Selectivity. ACS Catalysis, 2016, 6, 5673-5683.	5.5	96
81	Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO2 separation from natural gas. Microporous and Mesoporous Materials, 2014, 192, 43-51.	2.2	95
82	Modified Mesoporous Silica Gas Separation Membranes on Polymeric Hollow Fibers. Chemistry of Materials, 2011, 23, 3025-3028.	3.2	92
83	Oxidative Stability of Amino Polymer–Alumina Hybrid Adsorbents for Carbon Dioxide Capture. Energy & Fuels, 2013, 27, 1547-1554.	2.5	92
84	Acid–Base Bifunctional Shell Cross-Linked Micelle Nanoreactor for One-Pot Tandem Reaction. ACS Catalysis, 2016, 6, 784-787.	5.5	91
85	Poly(styrene)-Supported Co–Salen Complexes as Efficient Recyclable Catalysts for the Hydrolytic Kinetic Resolution of Epichlorohydrin. Chemistry - A European Journal, 2006, 12, 576-583.	1.7	90
86	Poly(<scp>L</scp> â€lysine) Brush–Mesoporous Silica Hybrid Material as a Biomoleculeâ€Based Adsorbent for CO ₂ Capture from Simulated Flue Gas and Air. Chemistry - A European Journal, 2011, 17, 10556-10561.	1.7	89
87	Molecularly Mixed Composite Membranes for Advanced Separation Processes. Angewandte Chemie - International Edition, 2019, 58, 2638-2643.	7.2	86
88	Aminopolymer-Impregnated Hierarchical Silica Structures: Unexpected Equivalent CO ₂ Uptake under Simulated Air Capture and Flue Gas Capture Conditions. Chemistry of Materials, 2019, 31, 5229-5237.	3.2	85
89	Continuous Zeolite MFI Membranes Fabricated from 2D MFI Nanosheets on Ceramic Hollow Fibers. Angewandte Chemie - International Edition, 2019, 58, 8201-8205.	7.2	84
90	Dehydration, Dehydroxylation, and Rehydroxylation of Single-Walled Aluminosilicate Nanotubes. ACS Nano, 2010, 4, 4897-4907.	7.3	82

#	Article	IF	CITATIONS
91	Formation and Oxidation/Gasification of Carbonaceous Deposits: A Review. Industrial & Engineering Chemistry Research, 2016, 55, 9760-9818.	1.8	82
92	A Practical One-Pot Synthesis of Enantiopure Unsymmetrical Salen Ligands. Journal of Organic Chemistry, 2006, 71, 2903-2906.	1.7	81
93	Post-spinning infusion of poly(ethyleneimine) into polymer/silica hollow fiber sorbents for carbon dioxide capture. Chemical Engineering Journal, 2013, 221, 166-175.	6.6	81
94	Facilely synthesized meso-macroporous polymer as support of poly(ethyleneimine) for highly efficient and selective capture of CO2. Chemical Engineering Journal, 2017, 314, 466-476.	6.6	81
95	Tuning of higher alcohol selectivity and productivity in CO hydrogenation reactions over K/MoS2 domains supported on mesoporous activated carbon and mixed MgAl oxide. Journal of Catalysis, 2015, 324, 88-97.	3.1	80
96	Catalytic propane dehydrogenation over In2O3–Ga2O3 mixed oxides. Applied Catalysis A: General, 2015, 498, 167-175.	2.2	80
97	Design, Behavior, and Recycling of Silica-Supported CuBrâ^'Bipyridine ATRP Catalysts. Macromolecules, 2004, 37, 1190-1203.	2.2	79
98	Continuous Reversible Addition-Fragmentation Chain Transfer Polymerization in Miniemulsion Utilizing a Multi-Tube Reaction System. Macromolecular Rapid Communications, 2004, 25, 1064-1068.	2.0	77
99	Hierarchical Ga-MFI Catalysts for Propane Dehydrogenation. Chemistry of Materials, 2017, 29, 7213-7222.	3.2	77
100	Poly(ethylenimine)â€Functionalized Monolithic Alumina Honeycomb Adsorbents for CO ₂ Capture from Air. ChemSusChem, 2016, 9, 1859-1868.	3.6	75
101	Effect of Humidity on the CO ₂ Adsorption of Tertiary Amine Grafted SBA-15. Journal of Physical Chemistry C, 2017, 121, 23480-23487.	1.5	74
102	Direct synthesis of single-walled aminoaluminosilicate nanotubes with enhanced molecular adsorption selectivity. Nature Communications, 2014, 5, 3342.	5.8	73
103	Vapor phase hydrogenation of furfural over nickel mixed metal oxide catalysts derived from layered double hydroxides. Applied Catalysis A: General, 2016, 517, 187-195.	2.2	73
104	Single-Walled Aluminosilicate Nanotubes with Organic-Modified Interiors. Journal of Physical Chemistry C, 2011, 115, 7676-7685.	1.5	72
105	Kinetic and Mechanistic Examination of Acid–Base Bifunctional Aminosilica Catalysts in Aldol and Nitroaldol Condensations. ACS Catalysis, 2016, 6, 460-468.	5.5	72
106	Oxidatively‣table Linear Poly(propylenimine) ontaining Adsorbents for CO ₂ Capture from Ultradilute Streams. ChemSusChem, 2018, 11, 2628-2637.	3.6	72
107	Enhanced Cooperativity through Design: Pendant Co ^{III} Salen Polymer Brush Catalysts for the Hydrolytic Kinetic Resolution of Epichlorohydrin (Salen= <i>N</i> , <i>N</i> ′â€Bis(salicylidene)ethylenediamine Dianion). Chemistry - A European Journal, 2008. 14. 7306-7313.	1.7	71
108	Monolith-Supported Amine-Functionalized Mg ₂ (dobpdc) Adsorbents for CO ₂ Capture. ACS Applied Materials & Interfaces, 2017, 9, 17042-17050.	4.0	71

#	Article	IF	CITATIONS
109	Continuous Living Polymerization in Miniemulsion Using Reversible Addition Fragmentation Chain Transfer (RAFT) in a Tubular Reactorâ€. Industrial & Engineering Chemistry Research, 2005, 44, 2484-2493.	1.8	69
110	Hybrid Sulfonic Acid Catalysts Based on Silica-Supported Poly(Styrene Sulfonic Acid) Brush Materials and Their Application in Ester Hydrolysis. ACS Catalysis, 2011, 1, 674-681.	5.5	69
111	Homogeneous and heterogeneous 4-(N,N-dialkylamino)pyridines as effective single component catalysts in the synthesis of propylene carbonate. Journal of Molecular Catalysis A, 2007, 261, 160-166.	4.8	68
112	Silica-Immobilized Chiral Dirhodium(II) Catalyst for Enantioselective Carbenoid Reactions. Organic Letters, 2013, 15, 6136-6139.	2.4	66
113	Shaping amine-based solid CO2 adsorbents: Effects of pelletization pressure on the physical and chemical properties. Microporous and Mesoporous Materials, 2015, 204, 34-42.	2.2	66
114	Magnetic Nanoparticle Polymer Brush Catalysts: Alternative Hybrid Organic/Inorganic Structures to Obtain High, Local Catalyst Loadings for Use in Organic Transformations. Catalysis Letters, 2009, 131, 425-431.	1.4	65
115	The "Missing―Bicarbonate in CO ₂ Chemisorption Reactions on Solid Amine Sorbents. Journal of the American Chemical Society, 2018, 140, 8648-8651.	6.6	64
116	Stability of Supported Amine Adsorbents to SO ₂ and NO _{<i>x</i>} in Postcombustion CO ₂ Capture. 2. Multicomponent Adsorption. Industrial & Engineering Chemistry Research, 2014, 53, 12103-12110.	1.8	62
117	Evaluation of CO2 adsorption dynamics of polymer/silica supported poly(ethylenimine) hollow fiber sorbents in rapid temperature swing adsorption. International Journal of Greenhouse Gas Control, 2014, 21, 61-71.	2.3	62
118	A Mesoporous Cobalt Aluminate Spinel Catalyst for Nonoxidative Propane Dehydrogenation. ChemCatChem, 2017, 9, 3330-3337.	1.8	62
119	Sub-Ambient Temperature Direct Air Capture of CO ₂ using Amine-Impregnated MIL-101(Cr) Enables Ambient Temperature CO ₂ Recovery. Jacs Au, 2022, 2, 380-393.	3.6	62
120	Reaction pathways over copper and cerium oxide catalysts for direct synthesis of imines from amines under aerobic conditions. Journal of Catalysis, 2013, 301, 116-124.	3.1	61
121	Dynamic CO ₂ adsorption performance of internally cooled silicaâ€supported poly(ethylenimine) hollow fiber sorbents. AICHE Journal, 2014, 60, 3878-3887.	1.8	61
122	Dynamics of CO ₂ Adsorption on Amine Adsorbents. 1. Impact of Heat Effects. Industrial & Engineering Chemistry Research, 2012, 51, 15145-15152.	1.8	60
123	PIM-1 as a Solution-Processable "Molecular Basket―for CO ₂ Capture from Dilute Sources. ACS Macro Letters, 2015, 4, 1415-1419.	2.3	60
124	RAFT Inverse Miniemulsion Polymerization of Acrylamide. Macromolecular Rapid Communications, 2007, 28, 1010-1016.	2.0	59
125	Effect of support structure on CO2 adsorption properties of pore-expanded hyperbranched aminosilicas. Microporous and Mesoporous Materials, 2012, 151, 231-240.	2.2	59
126	Spatial arrangement and acid strength effects on acid–base cooperatively catalyzed aldol condensation on aminosilica materials. Journal of Catalysis, 2015, 325, 19-25.	3.1	59

#	Article	IF	CITATIONS
127	Origins of Unusual Alcohol Selectivities over Mixed MgAl Oxide-Supported K/MoS ₂ Catalysts for Higher Alcohol Synthesis from Syngas. ACS Catalysis, 2013, 3, 1665-1675.	5.5	58
128	Silica-Immobilized Zinc Î ² -Diiminate Catalysts for the Copolymerization of Epoxides and Carbon Dioxide. Organometallics, 2003, 22, 2571-2580.	1.1	57
129	Poly(amide-imide)/Silica Supported PEI Hollow Fiber Sorbents for Postcombustion CO ₂ Capture by RTSA. ACS Applied Materials & Interfaces, 2014, 6, 19336-19346.	4.0	57
130	Probing Intramolecular versus Intermolecular CO ₂ Adsorption on Amine-Grafted SBA-15. Langmuir, 2015, 31, 13350-13360.	1.6	57
131	Functionalization of the Internal Surface of Pure-Silica MFI Zeolite with Aliphatic Alcohols. Journal of Physical Chemistry C, 2008, 112, 3543-3551.	1.5	56
132	Enhanced Formaldehydeâ€Vapor Adsorption Capacity of Polymeric Amineâ€Incorporated Aminosilicas. Chemistry - A European Journal, 2014, 20, 6381-6390.	1.7	56
133	Probing Metal–Organic Framework Design for Adsorptive Natural Gas Purification. Langmuir, 2018, 34, 8443-8450.	1.6	56
134	Reduced Cu–Co–Al Mixed Metal Oxides for the Ring-Opening of Furfuryl Alcohol to Produce Renewable Diols. ACS Sustainable Chemistry and Engineering, 2017, 5, 8959-8969.	3.2	55
135	Synthesis of Block Copolymers Using RAFT Miniemulsion Polymerization in a Train of CSTRs. Macromolecules, 2004, 37, 9345-9354.	2.2	54
136	Miniemulsion reversible addition fragmentation chain transfer polymerization of vinyl acetate. Journal of Polymer Science Part A, 2005, 43, 2188-2193.	2.5	54
137	Recyclable Silica-Supported Iridium Bipyridine Catalyst for Aromatic C–H Borylation. ACS Catalysis, 2014, 4, 1365-1375.	5.5	53
138	An Immobilizedâ€Dirhodium Hollowâ€Fiber Flow Reactor for Scalable and Sustainable Câ^'H Functionalization in Continuous Flow. Angewandte Chemie - International Edition, 2018, 57, 10923-10927.	7.2	52
139	Solvothermal deposition and characterization of magnesium hydroxide nanostructures on zeolite crystals. Microporous and Mesoporous Materials, 2011, 139, 120-129.	2.2	51
140	Vapor-Phase Transport as A Novel Route to Hyperbranched Polyamine-Oxide Hybrid Materials. Chemistry of Materials, 2013, 25, 613-622.	3.2	51
141	Thin Hydrogen-Selective SAPO-34 Zeolite Membranes for Enhanced Conversion and Selectivity in Propane Dehydrogenation Membrane Reactors. Chemistry of Materials, 2016, 28, 4397-4402.	3.2	51
142	Direct aromatization of CO2 via combined CO2 hydrogenation and zeolite-based acid catalysis. Journal of CO2 Utilization, 2021, 45, 101405.	3.3	51
143	Synthesis of Hydrophobic Molecular Sieves by Hydrothermal Treatment with Acetic Acid. Chemistry of Materials, 2001, 13, 1041-1050.	3.2	50
144	Guanidinylated poly(allylamine) supported on mesoporous silica for CO2 capture from flue gas. Fuel, 2014, 121, 79-85.	3.4	50

#	Article	IF	CITATIONS
145	Composite Polymer/Oxide Hollow Fiber Contactors: Versatile and Scalable Flow Reactors for Heterogeneous Catalytic Reactions in Organic Synthesis. Angewandte Chemie - International Edition, 2015, 54, 6470-6474.	7.2	50
146	Emulsion and controlled miniemulsion polymerization of the renewable monomer γâ€methylâ€Î±â€methyleneâ€Î³â€butyrolactone. Journal of Polymer Science Part A, 2008, 46, 5929-5944.	2.5	49
147	Silica-Supported Sterically Hindered Amines for CO ₂ Capture. Langmuir, 2018, 34, 12279-12292.	1.6	49
148	Propane Dehydrogenation over In ₂ O ₃ –Ga ₂ O ₃ –Al ₂ O ₃ Mixed Oxides. ChemCatChem, 2016, 8, 214-221.	1.8	48
149	Spectroscopic Investigation of the Mechanisms Responsible for the Superior Stability of Hybrid Class 1/Class 2 CO ₂ Sorbents: A New Class 4 Category. ACS Applied Materials & Interfaces, 2016, 8, 12780-12791.	4.0	48
150	An efficient low-temperature route to nitrogen-doping and activation of mesoporous carbons for CO ₂ capture. Chemical Communications, 2015, 51, 17261-17264.	2.2	47
151	Hybrid Polymer/UiO-66(Zr) and Polymer/NaY Fiber Sorbents for Mercaptan Removal from Natural Gas. ACS Applied Materials & Interfaces, 2016, 8, 9700-9709.	4.0	47
152	Role of Alumina Basicity in CO ₂ Uptake in 3â€Aminopropylsilylâ€Grafted Alumina Adsorbents. ChemSusChem, 2017, 10, 2192-2201.	3.6	47
153	Moving Beyond Adsorption Capacity in Design of Adsorbents for CO ₂ Capture from Ultradilute Feeds: Kinetics of CO ₂ Adsorption in Materials with Stepped Isotherms. Industrial & Engineering Chemistry Research, 2019, 58, 366-377.	1.8	47
154	Tailoring molecular sieve properties during SDA removal via solvent extraction. Microporous and Mesoporous Materials, 2001, 48, 57-64.	2.2	46
155	Importance of Counterion Reactivity on the Deactivation of Coâ^'Salen Catalysts in the Hydrolytic Kinetic Resolution of Epichlorohydrin. Inorganic Chemistry, 2007, 46, 8887-8896.	1.9	46
156	Effect of Extended Aging and Oxidation on Linear Poly(propylenimine)-Mesoporous Silica Composites for CO ₂ Capture from Simulated Air and Flue Gas Streams. ACS Applied Materials & Interfaces, 2020, 12, 38085-38097.	4.0	46
157	Characterization of a Mixture of CO ₂ Adsorption Products in Hyperbranched Aminosilica Adsorbents by ¹³ C Solid-State NMR. Environmental Science & Technology, 2015, 49, 13684-13691.	4.6	45
158	Stability of amine-based hollow fiber CO2 adsorbents in the presence of NO and SO2. Fuel, 2015, 160, 153-164.	3.4	44
159	Molecular Dynamics Simulations of Aldol Condensation Catalyzed by Alkylamine-Functionalized Crystalline Silica Surfaces. Journal of the American Chemical Society, 2016, 138, 7664-7672.	6.6	44
160	Formation Mechanisms and Defect Engineering of Imine-Based Porous Organic Cages. Chemistry of Materials, 2018, 30, 262-272.	3.2	44
161	Integrated capture and conversion of CO2 into methane using NaNO3/MgOÂ+ÂRu/Al2O3 as a catalytic sorbent. Chemical Engineering Journal, 2021, 420, 130369.	6.6	44
162	Co(III)-Porphyrin-Mediated Highly Regioselective Ring-Opening of Terminal Epoxides with Alcohols and Phenols. ACS Catalysis, 2011, 1, 489-492.	5.5	43

#	Article	IF	CITATIONS
163	Metal–Organic-Framework-Derived Co/Cu–Carbon Nanoparticle Catalysts for Furfural Hydrogenation. ACS Applied Nano Materials, 2019, 2, 6040-6056.	2.4	43
164	A Versatile Co(bisalen) Unit for Homogeneous and Heterogeneous Cooperative Catalysis in the Hydrolytic Kinetic Resolution of Epoxides. Chemistry - A European Journal, 2009, 15, 3951-3955.	1.7	42
165	Metal Organic Frameworks for Selective Adsorption of <i>t</i> Butyl Mercaptan from Natural Gas. Energy & Fuels, 2015, 29, 3312-3321.	2.5	42
166	Structure–Property Relationships of Inorganically Surface-Modified Zeolite Molecular Sieves for Nanocomposite Membrane Fabrication. Journal of Physical Chemistry C, 2012, 116, 9636-9645.	1.5	41
167	Elucidating the role of silica surfaces in the ring-opening polymerization of lactide: catalytic behavior of silica-immobilized zinc β-diiminate complexes. Journal of Catalysis, 2004, 222, 558-564.	3.1	40
168	Research needs targeting direct air capture of carbon dioxide: Material & process performance characteristics under realistic environmental conditions. Korean Journal of Chemical Engineering, 2022, 39, 1-19.	1.2	40
169	Spectroscopic Characterization of Adsorbed ¹³ CO ₂ on 3-Aminopropylsilyl-Modified SBA15 Mesoporous Silica. Environmental Science & Technology, 2017, 51, 6553-6559.	4.6	39
170	Role of Amine Structure and Site Isolation on the Performance of Aminosilica-Immobilized Zirconium CGC-Inspired Ethylene Polymerization Catalysts. Organometallics, 2004, 23, 4089-4096.	1.1	38
171	Design of silica-tethered metal complexes for polymerization catalysis. Topics in Catalysis, 2005, 34, 67-76.	1.3	38
172	Aziridine-Functionalized Mesoporous Silica Membranes on Polymeric Hollow Fibers: Synthesis and Single-Component CO ₂ and N ₂ Permeation Properties. Industrial & Engineering Chemistry Research, 2015, 54, 4407-4413.	1.8	38
173	Materials and Processes for Carbon Capture and Sequestration. ChemSusChem, 2010, 3, 863-864.	3.6	37
174	Synthesis, characterization, and tunable adsorption and diffusion properties of hybrid <scp>ZIF</scp> â€7â€90 frameworks. AICHE Journal, 2016, 62, 525-537.	1.8	37
175	Continuous RAFT miniemulsion polymerization of styrene in a train of CSTRs. AICHE Journal, 2005, 51, 1009-1021.	1.8	36
176	Influence of Passivation on the Reactivity of Unpromoted and Rb-Promoted Mo ₂ C Nanoparticles for CO Hydrogenation. ACS Catalysis, 2012, 2, 1408-1416.	5.5	36
177	Zeolite topology effects in the alkylation of phenol with propylene. Applied Catalysis A: General, 2013, 459, 114-120.	2.2	36
178	Self-supported branched poly(ethyleneimine) materials for CO ₂ adsorption from simulated flue gas. Journal of Materials Chemistry A, 2019, 7, 19513-19521.	5.2	36
179	MATERIALS SCIENCE: Zeolites Go Organic. Science, 2003, 300, 439-440.	6.0	35
180	Poly(glycidyl amine)-Loaded SBA-15 Sorbents for CO ₂ Capture from Dilute and Ultradilute Gas Mixtures. ACS Applied Polymer Materials, 2019, 1, 3137-3147.	2.0	35

#	Article	IF	CITATIONS
181	Allâ€Nanoporous Hybrid Membranes: Redefining Upper Limits on Molecular Separation Properties. Angewandte Chemie - International Edition, 2019, 58, 236-239.	7.2	35
182	Impact of flow regime on polydispersity in tubular RAFT miniemulsion polymerization. AICHE Journal, 2006, 52, 1566-1576.	1.8	34
183	Global Warming and Carbon-Negative Technology: Prospects for a Lower-Cost Route to a Lower-Risk Atmosphere. Energy and Environment, 2009, 20, 973-984.	2.7	34
184	Aminosilanes Grafted to Basic Alumina as CO ₂ Adsorbents—Role of Grafting Conditions on CO ₂ Adsorption Properties. ChemSusChem, 2014, 7, 3145-3156.	3.6	34
185	Zeolitic Imidazolate Framework Membranes Supported on Macroporous Carbon Hollow Fibers by Fluidic Processing Techniques. Advanced Materials Interfaces, 2017, 4, 1700080.	1.9	34
186	Synthesis of Donor/Acceptor-Substituted Diazo Compounds in Flow and Their Application in Enantioselective Dirhodium-Catalyzed Cyclopropanation and C–H Functionalization. Organic Letters, 2017, 19, 3055-3058.	2.4	33
187	Role of Amine Structure on Hydrogen Sulfide Capture from Dilute Gas Streams Using Solid Adsorbents. Energy & Fuels, 2018, 32, 6926-6933.	2.5	33
188	Modulating the Reactivity of an Organometallic Catalyst via Immobilization on a Spatially Patterned Silica Surface. Chemistry of Materials, 2005, 17, 4758-4761.	3.2	31
189	Factors influencing recyclability of Co(III)-salen catalysts in the hydrolytic kinetic resolution of epichlorohydrin. Journal of Molecular Catalysis A, 2010, 316, 8-15.	4.8	31
190	Mixed MgAl Oxide Supported Potassium Promoted Molybdenum Sulfide as a Selective Catalyst for Higher Alcohol Synthesis from Syngas. Catalysis Letters, 2012, 142, 875-881.	1.4	31
191	Post-Grafting Amination of Alkyl Halide-Functionalized Silica for Applications in Catalysis, Adsorption, and ¹⁵ N NMR Spectroscopy. Langmuir, 2015, 31, 2218-2227.	1.6	31
192	Modeling and experimental validation of carbon dioxide sorption on hollow fibers loaded with silica-supported poly(ethylenimine). Chemical Engineering Journal, 2015, 259, 737-751.	6.6	31
193	Engineering Porous Organic Cage Crystals with Increased Acid Gas Resistance. Chemistry - A European Journal, 2016, 22, 10743-10747.	1.7	31
194	Aminosilica Materials as Adsorbents for the Selective Removal of Aldehydes and Ketones from Simulated Bioâ€Oil. ChemSusChem, 2011, 4, 379-385.	3.6	30
195	CO ₂ Sorption Performance of Composite Polymer/Aminosilica Hollow Fiber Sorbents: An Experimental and Modeling Study. Industrial & Engineering Chemistry Research, 2015, 54, 1783-1795.	1.8	30
196	Aminopolymer Mobility and Support Interactions in Silica-PEI Composites for CO ₂ Capture Applications: A Quasielastic Neutron Scattering Study. Journal of Physical Chemistry B, 2017, 121, 6721-6731.	1.2	30
197	NaNO ₃ â€Promoted Mesoporous MgO for Highâ€Capacity CO ₂ Capture from Simulated Flue Gas with Isothermal Regeneration. ChemSusChem, 2020, 13, 2988-2995.	3.6	30
198	Switchgrass pretreatment and hydrolysis using low concentrations of formic acid. Journal of Chemical Technology and Biotechnology, 2011, 86, 706-713.	1.6	29

#	Article	IF	CITATIONS
199	One-Step Synthesis of Zeolite Membranes Containing Catalytic Metal Nanoclusters. ACS Applied Materials & Interfaces, 2016, 8, 24671-24681.	4.0	29
200	Adsorption Microcalorimetry of CO ₂ in Confined Aminopolymers. Langmuir, 2017, 33, 117-124.	1.6	29
201	Molecularly Mixed Composite Membranes for Advanced Separation Processes. Angewandte Chemie, 2019, 131, 2664-2669.	1.6	29
202	Selective removal of hydrogen sulfide from simulated biogas streams using sterically hindered amine adsorbents. Chemical Engineering Journal, 2020, 379, 122349.	6.6	29
203	Assessing site-isolation of amine groups on aminopropyl-functionalized SBA-15 silica materials via spectroscopic and reactivity probes. Inorganica Chimica Acta, 2008, 361, 3024-3032.	1.2	28
204	Reaction-dependent heteroatom modification of acid–base catalytic cooperativity in aminosilica materials. Applied Catalysis A: General, 2015, 504, 429-439.	2.2	28
205	Amine functionalization of cellulose nanocrystals for acid–base organocatalysis: surface chemistry, cross-linking, and solvent effects. Cellulose, 2018, 25, 6495-6512.	2.4	28
206	Optimized Cellulose Nanocrystal Organocatalysts Outperform Silica-Supported Analogues: Cooperativity, Selectivity, and Bifunctionality in Acid–Base Aldol Condensation Reactions. ACS Catalysis, 2019, 9, 3266-3277.	5.5	28
207	Highly active oligomeric Co(salen) catalysts for the asymmetric synthesis of α-aryloxy or α-alkoxy alcohols via kinetic resolution of terminal epoxides. Journal of Molecular Catalysis A, 2010, 329, 1-6.	4.8	27
208	Insights into Azetidine Polymerization for the Preparation of Poly(propylenimine)-Based CO ₂ Adsorbents. Macromolecules, 2017, 50, 9135-9143.	2.2	27
209	¹⁵ N Solid State NMR Spectroscopic Study of Surface Amine Groups for Carbon Capture: 3-Aminopropylsilyl Grafted to SBA-15 Mesoporous Silica. Environmental Science & Technology, 2018, 52, 1488-1495.	4.6	27
210	Role of the mesopore generation method in structure, activity and stability of MFI catalysts in glycerol acetylation. Applied Catalysis A: General, 2019, 571, 107-117.	2.2	27
211	Probing the Role of Zr Addition versus Textural Properties in Enhancement of CO ₂ Adsorption Performance in Silica/PEI Composite Sorbents. Langmuir, 2015, 31, 9356-9365.	1.6	26
212	Effect of Different Acid Initiators on Branched Poly(propylenimine) Synthesis and CO ₂ Sorption Performance. ACS Sustainable Chemistry and Engineering, 2019, 7, 7338-7345.	3.2	26
213	Recyclable polymerization catalysts: methyl methacrylate polymerization with silica-supported CuBr–bipyridine atom transfer radical polymerization catalysts. Journal of Catalysis, 2005, 232, 276-294.	3.1	25
214	Mechanistic Aspects of Sterically Stabilized Controlled Radical Inverse Miniemulsion Polymerization. Macromolecules, 2009, 42, 3906-3916.	2.2	25
215	Introduction to Special Issue on Operando and In Situ Studies of Catalysis. ACS Catalysis, 2012, 2, 2444-2445.	5.5	25
216	CO ₂ Adsorption and Oxidative Degradation of Silica-Supported Branched and Linear Aminosilanes. Industrial & Engineering Chemistry Research, 2020, 59, 7061-7071.	1.8	25

#	Article	IF	CITATIONS
217	Single-walled zeolitic nanotubes. Science, 2022, 375, 62-66.	6.0	25
218	Kinetic Evaluation of Cooperative [Co(salen)] Catalysts in the Hydrolytic Kinetic Resolution of <i>rac</i> â€Epichlorohydrin. ChemCatChem, 2010, 2, 1252-1259.	1.8	24
219	Molecular blends of methylated-poly(ethylenimine) and amorphous porous organic cages for SO ₂ adsorption. Journal of Materials Chemistry A, 2018, 6, 22043-22052.	5.2	24
220	Poly(ethyleneimine) infused and functionalized Torlon®-silica hollow fiber sorbents for post-combustion CO2 capture. Polymer, 2014, 55, 1341-1346.	1.8	23
221	Potassium incorporated alumina based CO2 capture sorbents: Comparison with supported amine sorbents under ultra-dilute capture conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 486, 78-85.	2.3	23
222	Catalytic oxidation of solid carbon and carbon monoxide over ceriumâ€zirconium mixed oxides. AICHE Journal, 2017, 63, 725-738.	1.8	23
223	Effect of the synthetic method and support porosity on the structure and performance of silica-supported CuBr/pyridylmethanimine atom transfer radical polymerization catalysts. I. Catalyst preparation and characterization. Journal of Polymer Science Part A, 2004, 42, 1367-1383.	2.5	22
224	Functionalized Polymer-Supported Pyridine Ligands for Palladium-Catalyzed C(sp ³)–H Arylation. ACS Catalysis, 2016, 6, 5245-5250.	5.5	22
225	Bifunctional Polymer Architectures for Cooperative Catalysis: Tunable Acid–Base Polymers for Aldol Condensation. ChemCatChem, 2017, 9, 137-143.	1.8	22
226	MOF-Derived Iron Catalysts for Nonoxidative Propane Dehydrogenation. Journal of Physical Chemistry C, 2018, 122, 28637-28644.	1.5	22
227	Effect of Humidity on the Sorption of H ₂ S from Multicomponent Acid Gas Streams on Silica-Supported Sterically Hindered and Unhindered Amines. ACS Sustainable Chemistry and Engineering, 2020, 8, 10102-10114.	3.2	22
228	Porosity and hydrophilicity modulated quaternary ammonium-based sorbents for CO2 capture. Chemical Engineering Journal, 2021, 413, 127532.	6.6	22
229	Compartmentalisation of molecular catalysts for nonorthogonal tandem catalysis. Chemical Society Reviews, 2022, 51, 57-70.	18.7	22
230	Effect of the synthetic method and support porosity on the structure and performance of silica-supported CuBr/pyridylmethanimine atom transfer radical polymerization catalysts. II. Polymerization of methyl methacrylate. Journal of Polymer Science Part A, 2004, 42, 1384-1399.	2.5	21
231	Leached nickel promotes catalysis using supported Ni(II) complex precatalysts in Kumada-Corriu reactions. Journal of Molecular Catalysis A, 2009, 297, 125-134.	4.8	21
232	Silylated Mesoporous Silica Membranes on Polymeric Hollow Fiber Supports: Synthesis and Permeation Properties. ACS Applied Materials & Interfaces, 2014, 6, 17877-17886.	4.0	21
233	Silica-Supported Hindered Aminopolymers for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2019, 58, 22551-22560.	1.8	21
234	Material properties and operating configurations of membrane reactors for propane dehydrogenation. AICHE Journal, 2015, 61, 922-935.	1.8	20

#	Article	IF	CITATIONS
235	Chemical Kinetics of the Autoxidation of Poly(ethylenimine) in CO ₂ Sorbents. ACS Sustainable Chemistry and Engineering, 2021, 9, 8477-8486.	3.2	20
236	Recoverable and recyclable magnetic nanoparticle supported aluminium isopropoxide for ring-opening polymerization of μ -caprolactone. Dalton Transactions, 2010, 39, 1470-1472.	1.6	19
237	In Situ Generation of Radical Coke and the Role of Coke-Catalyst Contact on Coke Oxidation. Industrial & Engineering Chemistry Research, 2016, 55, 5271-5278.	1.8	19
238	Optimized Immobilization Strategy for Dirhodium(II) Carboxylate Catalysts for Câ^'H Functionalization and Their Implementation in a Packed Bed Flow Reactor. Angewandte Chemie - International Edition, 2020, 59, 19525-19531.	7.2	19
239	Oxidative Heck Coupling Using Pd(II) Supported on Organosilane-Functionalized Silica Mesocellular Foam. Topics in Catalysis, 2010, 53, 1048-1054.	1.3	18
240	Catalytic Regioselective Epoxide Ring Opening with Phenol Using Homogeneous and Supported Analogues of Dimethylaminopyridine. Topics in Catalysis, 2012, 55, 432-438.	1.3	18
241	On the Relationship between Mo <i>K</i> -Edge Energies and DFT Computed Partial Charges. Journal of Physical Chemistry C, 2013, 117, 2769-2773.	1.5	18
242	Direct dual layer spinning of aminosilica/ <scp>T</scp> orlon [®] hollow fiber sorbents with a lumen layer for CO ₂ separation by rapid temperature swing adsorption. Journal of Applied Polymer Science, 2015, 132, .	1.3	18
243	Synergistic Effect of Mixed Oxide on the Adsorption of Ammonia with Metal–Organic Frameworks. Industrial & Engineering Chemistry Research, 2016, 55, 6492-6500.	1.8	18
244	Superlative Scientific Writing. ACS Catalysis, 2017, 7, 2218-2219.	5.5	18
245	Positive Effect of Water on Zeolite BEA Catalyzed Alkylation of Phenol with Propylene. Catalysis Letters, 2014, 144, 434-438.	1.4	17
246	Unraveling the Dynamics of Aminopolymer/Silica Composites. Langmuir, 2016, 32, 2617-2625.	1.6	17
247	Transformations of FCC catalysts and carbonaceous deposits during repeated reaction-regeneration cycles. Catalysis Science and Technology, 2019, 9, 6977-6992.	2.1	17
248	Aminated poly(ethylene glycol) methacrylate resins as stable heterogeneous catalysts for the aldol reaction in water. Journal of Catalysis, 2020, 381, 540-546.	3.1	17
249	Understanding the Impacts of Support–Polymer Interactions on the Dynamics of Poly(ethyleneimine) Confined in Mesoporous SBA-15. Journal of the American Chemical Society, 2022, 144, 11664-11675.	6.6	17
250	Effect of Counter-Ion on Recycle of Polymer Resin Supported Co(III)-Salen Catalysts in the Hydrolytic Kinetic Resolution of Epichlorohydrin. Topics in Catalysis, 2010, 53, 1063-1065.	1.3	16
251	Evaluation of enantiopure and non-enantiopure Co(III)-salen catalysts and their counter-ion effects in the hydrolytic kinetic resolution (HKR) of racemic epichlorohydrin. Journal of Molecular Catalysis A, 2013, 366, 1-7.	4.8	16
252	Silica supported poly(propylene guanidine) as a CO2 sorbent in simulated flue gas and direct air capture. Adsorption, 2020, 26, 89-101.	1.4	16

#	Article	IF	CITATIONS
253	Metal–Organic Frameworks and Covalent Organic Frameworks: Emerging Advances and Applications. Jacs Au, 2022, 2, 1504-1505.	3.6	16
254	Interrogating the Carbon and Oxygen K-Edge NEXAFS of a CO ₂ -Dosed Hyperbranched Aminosilica. Journal of Physical Chemistry Letters, 2015, 6, 148-152.	2.1	15
255	Functionalized cellulose nanofibril aerogels as cooperative acid–base organocatalysts for liquid flow reactions. Carbohydrate Polymers, 2020, 233, 115825.	5.1	15
256	Single‣tep Scalable Fabrication of Zeolite MFI Hollow Fiber Membranes for Hydrocarbon Separations. Advanced Materials Interfaces, 2020, 7, 2000926.	1.9	15
257	Effect of metallation protocol on the preparation and performance of silica-immobilized Ti CGC-inspired ethylene polymerization catalysts. Journal of Molecular Catalysis A, 2005, 237, 26-35.	4.8	14
258	Seeded growth, silylation, and organic/water separation properties of MCM-48 membranes. Journal of Membrane Science, 2013, 427, 293-302.	4.1	14
259	Solutionâ€Processed Ultrathin Aluminosilicate Nanotube–Poly(vinyl alcohol) Composite Membranes with Partial Alignment of Nanotubes. ChemNanoMat, 2015, 1, 102-108.	1.5	14
260	Airborne Aldehyde Abatement by Latex Coatings Containing Amine-Functionalized Porous Silicas. Industrial & Engineering Chemistry Research, 2015, 54, 263-271.	1.8	14
261	lon exchange of zeolite membranes by a vacuum â€ [~] flow-through' technique. Microporous and Mesoporous Materials, 2015, 203, 170-177.	2.2	14
262	Vapor Phase Hydrogenolysis of Furanics Utilizing Reduced Cobalt Mixed Metal Oxide Catalysts. ChemCatChem, 2017, 9, 1815-1823.	1.8	14
263	An Immobilizedâ€Dirhodium Hollowâ€Fiber Flow Reactor for Scalable and Sustainable Câ^'H Functionalization in Continuous Flow. Angewandte Chemie, 2018, 130, 11089-11093.	1.6	14
264	CO ₂ and SO ₂ Interactions with Methylated Poly(ethylenimine)-Functionalized Capacitive Micromachined Ultrasonic Transducers (CMUTs): Gas Sensing and Degradation Mechanism. ACS Applied Electronic Materials, 2019, 1, 1150-1161.	2.0	14
265	Alkyl-Aryl Amine-Rich Molecules for CO ₂ Removal via Direct Air Capture. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	14
266	Polymer―and Silicaâ€Supported Iron BPMENâ€Inspired Catalysts for CH Bond Functionalization Reactions. Chemistry - an Asian Journal, 2014, 9, 3142-3152.	1.7	13
267	Supported K/MoS2 and K/Mo2C Catalysts for Higher Alcohol Synthesis from Synthesis Gas: Impact of Molybdenum Precursor and Metal Oxide Support on Activity and Selectivity. Catalysis Letters, 2014, 144, 825-830.	1.4	13
268	Catalytic reactions of coke with dioxygen and steam over alkaline-earth-metal-doped cerium-zirconium mixed oxides. Applied Catalysis A: General, 2017, 535, 17-23.	2.2	13
269	Emerging materials for lowering atmospheric carbon. Environmental Technology and Innovation, 2017, 7, 30-43.	3.0	13
270	Conversion of Unprotected Aldose Sugars to Polyhydroxyalkyl and <i>C</i> -Glycosyl Furans via Zirconium Catalysis. Journal of Organic Chemistry, 2020, 85, 15337-15346.	1.7	13

#	Article	IF	CITATIONS
271	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	4.0	13
272	Copper(II) Acetate-Induced Oxidation of Hydrazones to Diazo Compounds under Flow Conditions Followed by Dirhodium-Catalyzed Enantioselective Cyclopropanation Reactions. Organic Letters, 2021, 23, 5363-5367.	2.4	13
273	Welcome to JACS Au!. Jacs Au, 2021, 1, 1-2.	3.6	13
274	Transients in RAFT Miniemulsion Polymerization in CSTR Trains. Industrial & Engineering Chemistry Research, 2006, 45, 7084-7089.	1.8	12
275	Influence of Cobalt on Rubidium-Promoted Alumina-Supported Molybdenum Carbide Catalysts for Higher Alcohol Synthesis from Syngas. Topics in Catalysis, 2013, 56, 1740-1751.	1.3	12
276	Soluble and Supported Molecular Co ^{III} Catalysts for the Regioselective Ringâ€Opening of 1,2â€Epoxyhexane with Methanol. ChemCatChem, 2013, 5, 201-209.	1.8	12
277	Separation of <scp>C₂–C₄</scp> hydrocarbons from methane by zeolite <scp>MFI</scp> hollow fiber membranes fabricated from <scp>2D</scp> nanosheets. AICHE Journal, 2021, 67, .	1.8	12
278	Modulation and Tuning of UiO-66 for Lewis Acid Catalyzed Carbohydrate Conversion: Conversion of Unprotected Aldose Sugars to Polyhydroxyalkyl and <i>C</i> -Glycosyl Furans. ACS Sustainable Chemistry and Engineering, 2021, 9, 11581-11595.	3.2	12
279	Perspective - the need and prospects for negative emission technologies - direct air capture through the lens of current sorption process development. Korean Journal of Chemical Engineering, 2021, 38, 2375-2380.	1.2	12
280	Polymer Resin Supported Cobalt–Salen Catalysts: Role of Co ^(II) Salen Species in the Regioselective Ring Opening of 1,2â€Epoxyhexane with Methanol. ChemCatChem, 2013, 5, 3636-3643.	1.8	11
281	Co(III) complexes of tetradentate X3L type ligands: Synthesis, electronic structure, and reactivity. Inorganica Chimica Acta, 2015, 430, 30-35.	1.2	11
282	Linking Silica Support Morphology to the Dynamics of Aminopolymers in Composites. Langmuir, 2017, 33, 5412-5422.	1.6	11
283	Hydroboration of substituted alkynes using a solid polymeric carboxylic acid catalyst. Journal of Catalysis, 2019, 369, 493-500.	3.1	11
284	On the homogeneity/heterogeneity of solid copper oxide precatalysts in the oxidative homocoupling of ethynylbenzene. Journal of Molecular Catalysis A, 2014, 395, 514-522.	4.8	10
285	Insight into reaction pathways in CO hydrogenation reactions over K/MoS ₂ supported catalysts via alcohol/olefin co-feed experiments. Catalysis Science and Technology, 2016, 6, 1957-1966.	2.1	10
286	Another Nobel Prize for Catalysis: Frances Arnold in 2018. ACS Catalysis, 2018, 8, 10913-10913.	5.5	10
287	Sol–gel derived CeO ₂ /αâ€Al ₂ O ₃ bilayer thin film as an anti oking barrier and its catalytic coke oxidation performance. AICHE Journal, 2018, 64, 4019-4026.	1.8	10
288	Steam reforming of ethylene over nickel based spinel oxides. Applied Catalysis A: General, 2020, 603, 117739.	2.2	10

#	Article	IF	CITATIONS
289	Correction to "Systems Design and Economic Analysis of Direct Air Capture of CO ₂ through Temperature Vacuum Swing Adsorption Using MIL-101(Cr)-PEI-800 and mmen-Mg ₂ (dobpdc) MOF Adsorbents― Industrial & Engineering Chemistry Research, 2020, 59, 503-505.	1.8	10
290	Drastic enhancement of carbon dioxide adsorption in fluoroalkyl-modified poly(allylamine). Journal of Materials Chemistry A, 2021, 9, 10827-10837.	5.2	10
291	<i>ACS Catalysis</i> and the Scope of Papers Sought in Three Catalysis Subdisciplines: Biocatalysis and Enzymology, Molecular Catalysis for Organic Synthesis, and Heterogeneous Photocatalysis. ACS Catalysis, 2016, 6, 4782-4785.	5.5	9
292	Thermally stable α-alumina supported ceria for coking resistance and oxidation of radical coke generated in-situ. Fuel, 2018, 218, 357-365.	3.4	9
293	Effect of Si/Al Ratio on the Catalytic Activity of Twoâ€Dimensional MFI Nanosheets in Aromatic Alkylation and Alcohol Etherification. ChemCatChem, 2019, 11, 4548-4557.	1.8	9
294	Steam reforming of ethylene over manganese-chromium spinel oxides. Journal of Catalysis, 2019, 380, 224-235.	3.1	9
295	Polymeric Fiber Sorbents Embedded with Porous Organic Cages. ACS Applied Materials & Interfaces, 2021, 13, 47118-47126.	4.0	9
296	α-Alumina supported doped ceria catalysts for steam gasification and oxidation of radical coke. Chemical Engineering Research and Design, 2019, 151, 1-9.	2.7	8
297	Insights into Redox Dynamics of Vanadium Species Impregnated in Layered Siliceous Zeolitic Structures during Methanol Oxidation Reactions. ChemCatChem, 2020, 12, 141-151.	1.8	8
298	Distribution and Transport of CO2 in Hydrated Hyperbranched Poly(ethylenimine) Membranes: A Molecular Dynamics Simulation Approach. ACS Omega, 2021, 6, 3390-3398.	1.6	8
299	Copper-Catalyzed, Aerobic Oxidation of Hydrazone in a Three-Phase Packed Bed Reactor. Organic Process Research and Development, 2021, 25, 1911-1922.	1.3	8
300	Predicting the Mechanism and Products of CO ₂ Capture by Amines in the Presence of H ₂ O. Journal of Physical Chemistry A, 2021, 125, 9802-9818.	1.1	8
301	Cooperativity in the Aldol Condensation Using Bifunctional Mesoporous Silica–Poly(styrene) MCM-41 Organic/Inorganic Hybrid Catalysts. ACS Applied Materials & Interfaces, 2022, 14, 11235-11247.	4.0	8
302	Gasification of Radical Coke with Steam and Steam–Hydrogen Mixtures over Manganese–Chromium Oxides. Industrial & Engineering Chemistry Research, 2020, 59, 10813-10822.	1.8	7
303	Reversible Photoswitching in Poly(2â€oxazoline) Nanoreactors. Chemistry - A European Journal, 2020, 26, 11776-11781.	1.7	7
304	Creation of discrete active site domains <i>via</i> mesoporous silica poly(styrene) composite materials for incompatible acid–base cascade reactions. Catalysis Science and Technology, 2021, 11, 1311-1322.	2.1	7
305	Sequential polymer infusion into solid substrates (SPISS): Impact of processing on sorbent CO2 adsorption properties. Separation and Purification Technology, 2022, 292, 121042.	3.9	7
306	CO ₂ methanation reaction pathways over unpromoted and NaNO ₃ -promoted Ru/Al ₂ O ₃ catalysts. Catalysis Science and Technology, 2022, 12, 4637-4652.	2.1	7

#	Article	IF	CITATIONS
307	Welcome to ACS Catalysis. ACS Catalysis, 2011, 1, 1-1.	5.5	6
308	Formation of Mg(OH)2 nanowhiskers on LTA zeolite surfaces using a sol–gel method. Journal of Sol-Gel Science and Technology, 2011, 60, 189-197.	1.1	6
309	Assessing C3–C4 alcohol synthesis pathways over a MgAl oxide supported K/MoS2 catalyst via 13C2-ethanol and 13C2-ethylene co-feeds. Journal of Molecular Catalysis A, 2016, 423, 224-232.	4.8	6
310	Inter- and Intramolecular Cooperativity Effects in Alkanolamine-Based Acid–Base Heterogeneous Organocatalysts. ACS Omega, 2019, 4, 1110-1117.	1.6	6
311	In Silico Prediction of Structural Properties of a Racemic Porous Organic Cage Crystal. Journal of Physical Chemistry C, 2019, 123, 1720-1729.	1.5	6
312	<i>ACS Catalysis</i> Highlights Its Most Cited Papers from Around the Globe: Italy and Switzerland. ACS Catalysis, 2020, 10, 3514-3515.	5.5	6
313	ACS Catalysis Highlights Its Most Cited Papers from Around the Globe: China. ACS Catalysis, 2020, 10, 2762-2763.	5.5	6
314	NMR Reveals Two Bicarbonate Environments in SBA15-Solid-Amine CO ₂ Sorbents. Journal of Physical Chemistry C, 2021, 125, 16759-16765.	1.5	6
315	Highâ€Performance Zeolitic Hollowâ€Fiber Membranes by a Viscosity onfined Dry Gel Conversion Process for Gas Separation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
316	Exploring the Acid Gas Sorption Properties of Oxidatively Degraded Supported Amine Sorbents. Energy & Fuels, 2019, 33, 1372-1382.	2.5	5
317	Exploring steam stability of mesoporous alumina species for improved carbon dioxide sorbent design. Journal of Materials Science, 2019, 54, 7563-7575.	1.7	5
318	AEL Zeolite Nanosheet-Polyamide Nanocomposite Membranes on α-Alumina Hollow Fibers with Enhanced Pervaporation Properties. Industrial & Engineering Chemistry Research, 2020, 59, 14789-14796.	1.8	5
319	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	4.0	5
320	<i>ACS Catalysis</i> Highlights Its Most Cited Papers From Around the Globe: Canada. ACS Catalysis, 2020, 10, 3807-3808.	5.5	5
321	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	4.5	5
322	<i>ACS Catalysis</i> Highlights Its Most Cited Papers from Around the Globe: Republic of Korea. ACS Catalysis, 2020, 10, 5371-5371.	5.5	5
323	Enhanced Coke Gasification Activity of the Mn _{1.5} Cr _{1.5} O ₄ Spinel Catalyst during Coking in Ethylene–Steam Mixtures. Energy & Fuels, 2021, 35, 5271-5280.	2.5	5
324	Preparing Your Manuscript for Submission to ACS Catalysis. ACS Catalysis, 2014, 4, 2827-2828.	5.5	4

#	Article	IF	CITATIONS
325	Submitting to ACS Catalysis and Disclosing Prior Submissions. ACS Catalysis, 2016, 6, 5587-5588.	5.5	4
326	Announcing the Inaugural ACS Catalysis Early Career Advisory Board. ACS Catalysis, 2017, 7, 3712-3712.	5.5	4
327	Prior Submission to Alternate Journals Does Not Negatively Affect the Outcome of Submissions to ACS Catalysis. ACS Catalysis, 2017, 7, 3049-3049.	5.5	4
328	Selective C(<i>sp</i> ³)–H Monoarylation Catalyzed by a Covalently Cross‣inked Reverse Micelle‣upported Palladium Catalyst. Advanced Synthesis and Catalysis, 2017, 359, 3611-3617.	2.1	4
329	ACS Catalysis Recognizes Team of Scientists with 8th Lectureship Award and Appoints New Editor. ACS Catalysis, 2019, 9, 2692-2692.	5.5	4
330	ACS Catalysis Highlights Its Most Cited Papers from Around the Globe: France and Spain. ACS Catalysis, 2020, 10, 6473-6474.	5.5	4
331	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	2.4	4
332	Excellence <i>versus</i> Diversity? Not an Either/Or Choice. ACS Catalysis, 2020, 10, 7310-7311.	5.5	4
333	ACS Catalysis Highlights Its Most Cited Papers from Around the Globe: India. ACS Catalysis, 2020, 10, 6786-6787.	5.5	4
334	Steam reforming kinetics of olefins and aromatics over Mn-Cr-O spinel oxides. Journal of Catalysis, 2021, 404, 964-976.	3.1	4
335	Tethering Olefin Polymerization Catalysts and Cocatalysts to Inorganic Oxides. , 0, , 239-260.		4
336	<i>ACS Catalysis</i> Lectureship in its Fifth Year: First Team of Winners in 2015 and a Look into the Selection Process. ACS Catalysis, 2015, 5, 6185-6186.	5.5	3
337	Nicholas Turner Selected To Deliver the Seventh <i>ACS Catalysis</i> Lectureship. ACS Catalysis, 2018, 8, 1601-1601.	5.5	3
338	ACS Catalysis Appoints Second Early Career Advisory Board and New Associate Editor. ACS Catalysis, 2018, 8, 4582-4582.	5.5	3
339	<i>ACS Catalysis</i> Reflects on the 2019 Journal Impact Factor and Highlights Its Most Cited Papers from Around the Globe: Israel, Norway, Poland, and Taiwan. ACS Catalysis, 2020, 10, 8648-8649.	5.5	3
340	ACS Catalysis Highlights Its Most Cited Papers from Around the Globe: Austria, Belgium, Brazil, and Russia. ACS Catalysis, 2020, 10, 7932-7933.	5.5	3
341	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	6.6	3
342	A Convergence of Homogeneous and Heterogeneous Catalysis: Immobilized Organometallic Catalysts. , 2010, , 441-455.		2

#	Article	IF	CITATIONS
343	Recapping the Year at <i>ACS Catalysis</i> . ACS Catalysis, 2018, 8, 11908-11909.	5.5	2
344	Introducing the 2019 Early Career Advisory Board of ACS Catalysis. ACS Catalysis, 2019, 9, 3588-3588.	5.5	2
345	<i>ACS Catalysis</i> Blurs the Lines Between Catalysis Subdisciplines. ACS Catalysis, 2020, 10, 9662-9663.	5.5	2
346	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	7.3	2
347	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	7.3	2
348	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	23.0	2
349	Design of a bifunctional TEMPO-tertiary amine mesoporous silica catalyst for the three-step cascade synthesis of a chromene derivative. Molecular Catalysis, 2022, 517, 112021.	1.0	2
350	Selective Conversion of Malononitrile and Unprotected Carbohydrates to Bicyclic Polyhydroxyalkyl Dihydrofurans Using Magnesium Oxide as a Recyclable Catalyst. ACS Sustainable Chemistry and Engineering, 2022, 10, 5966-5975.	3.2	2
351	Introducing the 2022 <i>JACS Au</i> Early Career Advisory Board. Jacs Au, 2022, 2, 1233-1233.	3.6	2
352	Stability of supported pincer complex-based catalysts in Heck catalysis. , 2007, , 385-397.		1
353	Advice for emerging researchers on research program development: A personal case study. AICHE Journal, 2017, 63, 3627-3635.	1.8	1
354	Celebrating the 2016–2017 ACS Catalysis Lectureship Winners and Changes for the 2018 Award. ACS Catalysis, 2017, 7, 7399-7399.	5.5	1
355	Contributions to ACS Catalysis from Europe. ACS Catalysis, 2018, 8, 9684-9685.	5.5	1
356	<i>ACS Catalysis</i> Goes to China. ACS Catalysis, 2018, 8, 5636-5636.	5.5	1
357	Evolution of the Editorial Team at ACS Catalysis. ACS Catalysis, 2019, 9, 6540-6540.	5.5	1
358	Celebrating the Winners of the 2019 ACS Catalysis Lectureship. ACS Catalysis, 2019, 9, 9698-9698.	5.5	1
359	ACS Catalysis: The Global Catalysis Journal—Activities in 2019. ACS Catalysis, 2019, 9, 11801-11801.	5.5	1
360	Celebrating 10 Years of ACS Catalysis. ACS Catalysis, 2020, 10, 829-830.	5.5	1

#	Article	IF	CITATIONS
361	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	8.8	1
362	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	3.9	1
363	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	1.1	1
364	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	2.1	1
365	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	5.3	1
366	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	1.2	1
367	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	1.4	1
368	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	5.5	1
369	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	6.6	1
370	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	1.2	1
371	Optimized Immobilization Strategy for Dirhodium(II) Carboxylate Catalysts for Câ^'H Functionalization and Their Implementation in a Packed Bed Flow Reactor. Angewandte Chemie, 2020, 132, 19693-19699.	1.6	1
372	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	1.4	1
373	Influence of Co on Ethylene Steam Reforming Over Co–Cr–O Spinel Catalysts. Catalysis Letters, 2021, 151, 1456-1466.	1.4	1
374	Introducing the JACS Au Associate Editors: Carole Duboc and Hyunjoo Lee. Jacs Au, 2021, 1, 245-246.	3.6	1
375	Introducing the JACS Au Associate Editors: Sabine Flitsch and Nuno Maulide. Jacs Au, 2021, 1, 369-370.	3.6	1
376	Introducing the JACS Au Associate Editors: Rodney Priestley and Xin Xu. Jacs Au, 2021, 1, 525-526.	3.6	1
377	JACS Au Introduces 2021 Early Career Advisory Board. Jacs Au, 2021, 1, 697-697.	3.6	1
378	Anticoking Performance of Electrodeposited Mn/MnO Surface Coating on Fe–Ni–Cr Alloy during Steam Cracking. ACS Engineering Au, 2021, 1, 73-84.	2.3	1

#	Article	IF	CITATIONS
379	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	2.6	1
380	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	1.6	1
381	International Open Access Week and JACS Au. Jacs Au, 2021, 1, 1515-1515.	3.6	1
382	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	2.3	1
383	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	1.7	1
384	A New Strategy for Engineering One-pot, Multi-step Reaction Sequences with Catalyst Recovery in Pure Form. Studies in Surface Science and Catalysis, 2007, 172, 485-488.	1.5	0
385	Predicting a Breakthrough Year for ACS Catalysis. ACS Catalysis, 2017, 7, 919-919.	5.5	0
386	Global Scholarly Publishing and the Impact of Catalysis. ACS Catalysis, 2017, 7, 4621-4622.	5.5	0
387	ACS Catalysis Adds 15th Associate Editor. ACS Catalysis, 2017, 7, 4172-4172.	5.5	Ο
388	Celebrating 50 Years of Research by a Catalysis Icon. ACS Catalysis, 2017, 7, 8685-8685.	5.5	0
389	ACS Catalysis Further Diversifies Editorial Team. ACS Catalysis, 2017, 7, 7930-7930.	5.5	Ο
390	ACS Publications' Launch of Review Ready Submission Brings Changes to <i>ACS Catalysis</i> . ACS Catalysis, 2018, 8, 1817-1817.	5.5	0
391	Representing the Global Catalysis Community at ACS Catalysis. ACS Catalysis, 2018, 8, 692-693.	5.5	Ο
392	Updates from ACS Catalysis. ACS Catalysis, 2018, 8, 7468-7468.	5.5	0
393	The 2018 Journal Impact Factor for <i>ACS Catalysis</i> . ACS Catalysis, 2019, 9, 7616-7617.	5.5	Ο
394	Nobel Prize in Chemistry Recognizes Work on Lithium-Ion Batteries. ACS Catalysis, 2019, 9, 10587-10587.	5.5	0
395	<i>ACS Catalysis</i> in 2019. ACS Catalysis, 2019, 9, 649-650.	5.5	0
396	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	2.5	0

#	Article	IF	CITATIONS
397	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	1.2	Ο
398	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	2.6	0
399	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	5.3	0
400	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	1.6	0
401	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	1.7	Ο
402	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	1.2	0
403	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	2.3	0
404	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
405	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	3.2	0
406	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	2.5	0
407	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	3.2	Ο
408	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	3.2	0
409	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	3.2	Ο
410	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	1.8	0
411	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	1.6	Ο
412	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	2.0	0
413	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
414	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	1.3	0

#	Article	IF	CITATIONS
415	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
416	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	2.5	0
417	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	1.8	0
418	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	1.5	0
419	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	1.3	0
420	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	2.5	0
421	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	4.0	0
422	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	1.2	0
423	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.0	0
424	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	1.3	0
425	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	1.6	0
426	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	2.0	0
427	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	1.5	0
428	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	2.1	0
429	<i>ACS Catalysis</i> ' Most Accessed Articles and Blurring the Lines between Catalysis Subdisciplines. ACS Catalysis, 2020, 10, 5939-5940.	5.5	0
430	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	1.9	0
431	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	2.5	0
432	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	2.3	0

#	Article	IF	CITATIONS
433	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	1.7	Ο
434	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	3.2	0
435	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	1.1	ο
436	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	1.3	0
437	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	3.2	Ο
438	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	3.2	0
439	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	1.7	0
440	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	1.9	0
441	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	2.4	Ο
442	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	2.0	0
443	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	1.6	0
444	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	2.3	0
445	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	2.6	0
446	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	2.9	0
447	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	2.2	Ο
448	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	1.1	0
449	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	7.6	0
450	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	1.1	0

#	Article	IF	CITATIONS
451	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	8.8	0
452	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	2.5	0
453	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	1.8	Ο
454	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	2.4	0
455	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	1.2	Ο
456	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	1.8	0
457	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	2.4	0
458	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	1.5	0
459	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	1.9	Ο
460	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.0	0
461	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	1.8	Ο
462	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	1.1	0
463	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	1.7	О
464	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	2.5	0
465	Shannon Stahl Is the Winner of the 2020 <i>ACS Catalysis</i> Lectureship. ACS Catalysis, 2020, 10, 2322-2323.	5.5	0
466	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	2.3	0
467	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	1.7	0
468	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	1.2	0

#	Article	IF	CITATIONS
469	ACS Catalysis in the Time of COVID-19. ACS Catalysis, 2020, 10, 4385-4386.	5.5	0
470	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	7.6	0
471	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	2.6	0
472	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	23.0	0
473	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	4.6	0
474	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	1.6	0
475	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	2.3	0
476	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	1.8	0
477	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	2.9	0
478	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	1.1	0
479	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	4.5	0
480	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	4.0	0
481	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	2.5	0
482	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	1.8	0
483	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	1.9	0
484	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	1.1	0
485	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	2.4	0
486	The 2020 Early Career Advisory Board of <i>ACS Catalysis</i> . ACS Catalysis, 2020, 10, 4841-4841.	5.5	0

#	Article	IF	CITATIONS
487	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	3.7	Ο
488	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	2.3	0
489	<i>ACS Catalysis</i> Welcomes Professor Cathleen Crudden as Editor-in-Chief. ACS Catalysis, 2021, 11, 2397-2397.	5.5	0
490	FAQs about Submission to JACS Au. Jacs Au, 2021, 1, 117-118.	3.6	0
491	Introducing the JACS Au Editors: Wasiu Lawal and Christopher Jones. Jacs Au, 2021, 1, 895-896.	3.6	0
492	CATALYSIS BY MICROPOROUS METAL ORGANIC FRAMEWORKS. , 2018, , .		0
493	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	2.0	0
494	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	2.4	0
495	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	1.2	0
496	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	3.9	0
497	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
498	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	1.8	0
499	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	2.3	0
500	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	1.5	0
501	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	2.3	0
502	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	3.2	0
503	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	4.6	0
504	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	1.1	0

#	Article	IF	CITATIONS
505	JACS Au Enters Year 2. Jacs Au, 2022, 2, 1-2.	3.6	0
506	<i>JACS Au</i> at Pacifichem 2021. Jacs Au, 2021, 1, 2088-2088.	3.6	0