Jon A Preece

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8739031/jon-a-preece-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

154 4,683 38 62 g-index

163 4,948 4.7 4.94 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
154	Efficient encapsulation of water soluble inorganic and organic actives in melamine formaldehyde based microcapsules for control release into an aqueous environment. <i>Chemical Engineering Science</i> , 2021 , 229, 116103	4.4	5
153	Microcapsules with a fungal chitosan-gum Arabic-maltodextrin shell to encapsulate health-beneficial peppermint oil. <i>Food Hydrocolloids for Health</i> , 2021 , 1, 100016		1
152	Encapsulation of hexylsalicylate in an animal-free chitosan-gum Arabic shell by complex coacervation. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 625, 126861	5.1	3
151	Combined Experimental and Computational Study of Polyaromatic Hydrocarbon Aggregation: Isolating the Effect of Attached Functional Groups. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 20505-20515	3.9	4
150	On-Demand Electrical Switching of Antibody-Antigen Binding on Surfaces <i>ACS Applied Bio Materials</i> , 2018 , 1, 738-747	4.1	2
149	Novel encapsulation of water soluble inorganic or organic ingredients in melamine formaldehyde microcapsules to achieve their sustained release in an aqueous environment <i>RSC Advances</i> , 2018 , 8, 29495-29498	3.7	5
148	Novel polystyrene sulfonateBilica microspheres as a carrier of a water soluble inorganic salt (KCl) for its sustained release, via a dual-release mechanism. <i>RSC Advances</i> , 2017 , 7, 478-481	3.7	4
147	Room temperature thermally evaporated thin Au film on Si suitable for application of thiol self-assembled monolayers in micro/nano-electro-mechanical-systems sensors. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2017 , 35, 041514	2.9	8
146	Ultrasensitive determination of mercury(II) using glass nanopores functionalized with macrocyclic dioxotetraamines. <i>Mikrochimica Acta</i> , 2016 , 183, 491-495	5.8	21
145	Electrically Responsive Surfaces: Experimental and Theoretical Investigations. <i>Accounts of Chemical Research</i> , 2016 , 49, 1223-31	24.3	33
144	Composite microcapsules with enhanced mechanical stability and reduced active ingredient leakage. <i>Particuology</i> , 2016 , 26, 40-46	2.8	12
143	Selective glycoprotein detection through covalent templating and allosteric -imprinting. <i>Chemical Science</i> , 2015 , 6, 5114-5119	9.4	52
142	Multiscale patterning of nanocomposite polyelectrolyte/nanoparticle films using inkjet printing and AFM scratching. <i>Materials Research Express</i> , 2015 , 2, 065301	1.7	2
141	Modulation of Biointeractions by Electrically Switchable Oligopeptide Surfaces: Structural Requirements and Mechanism. <i>Advanced Materials Interfaces</i> , 2014 , 1, 1300085	4.6	18
140	Direct Observation of Reversible Biomolecule Switching Controlled By Electrical Stimulus. <i>Advanced Materials Interfaces</i> , 2014 , 1, 1-4	4.6	30
139	Switching specific biomolecular interactions on surfaces under complex biological conditions. <i>Analyst, The</i> , 2014 , 139, 5400-8	5	18
138	Electrically-driven modulation of surface-grafted RGD peptides for manipulation of cell adhesion. <i>Chemical Communications</i> , 2014 , 50, 15589-92	5.8	22

137	Nanoparticle catalysts for proton exchange membrane fuel cells: can surfactant effects be beneficial for electrocatalysis?. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 11435-46	3.6	30	
136	Surface molecular tailoring using pH-switchable supramolecular dendron-ligand assemblies. <i>ACS Applied Materials & Discrete Applied & Discre</i>	9.5	13	
135	Luminescent gold surfaces for sensing and imaging: patterning of transition metal probes. <i>ACS Applied Materials & District Applied & Dis</i>	9.5	9	
134	Different formation kinetics and photoisomerization behavior of self-assembled monolayers of thiols and dithiolanes bearing azobenzene moieties. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 110	14-24	17	
133	Synthesis and characterization of nano ceria for biological applications 2013,		2	
132	Glucose selective surface plasmon resonance-based bis-boronic acid sensor. <i>Analyst, The</i> , 2013 , 138, 71	4 9 -5	45	
131	Controlling gold nanoparticle assembly on electron beam-reduced nitrophenyl self-assembled monolayers via electron dose. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2013 , 433, 181-190	5.1	5	
130	Stimuli-Responsive Surfaces in Biomedical Applications 2013 , 377-422		5	
129	Measurement of the adhesion between single melamine-formaldehyde resin microparticles and a flat fabric surface using AFM. <i>Journal of Adhesion Science and Technology</i> , 2013 , 27, 973-987	2	2	
128	Engineering the mechanical and physical properties of organicIhorganic composite microcapsules. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2013 , 433, 30-36	5.1	19	
127	An electrically reversible switchable surface to control and study early bacterial adhesion dynamics in real-time. <i>Advanced Materials</i> , 2013 , 25, 2181-5	24	67	
126	Structure and Mechanical Properties of Consumer-Friendly PMMA Microcapsules. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 11253-11265	3.9	29	
125	Size and strength distributions of melamine-formaldehyde microcapsules prepared by membrane emulsification. <i>Powder Technology</i> , 2012 , 227, 43-50	5.2	33	
124	A Brief Review of Carbazole-Based Photorefractive Liquid Crystalline Materials. <i>Israel Journal of Chemistry</i> , 2012 , 52, 917-934	3.4	37	
123	Nanotechnology: The Mop-Downland Bottom-UplApproaches 2012,		45	
122	Multicomponent synthetic polymers with viral-mimetic chemistry for nucleic acid delivery. <i>Molecular Pharmaceutics</i> , 2012 , 9, 1-13	5.6	38	
121	Determination of the Failure Stresses for Fluid-filled Microcapsules that Rupture Near the Elastic Regime. <i>Experimental Mechanics</i> , 2012 , 52, 1435-1445	2.6	5	
120	Model Organic Surfaces to Probe Marine Bacterial Adhesion Kinetics by Surface Plasmon Resonance. <i>Advanced Functional Materials</i> , 2012 , 22, 3672-3681	15.6	41	

119	Failure of elastic-plastic coreBhell microcapsules under compression. AICHE Journal, 2012, 58, 2674-268	13.6	27
118	Control of nanoparticle aggregation in PEMFCs using surfactants. <i>International Journal of Low-Carbon Technologies</i> , 2012 , 7, 38-43	2.8	9
117	Determination of the shell permeability of microcapsules with a core of oil-based active ingredient. Journal of Microencapsulation, 2012 , 29, 463-74	3.4	19
116	One-step deposition of Au nanoparticles onto chemically modified ceramic hollow spheres via self-assembly. <i>Journal of Experimental Nanoscience</i> , 2012 , 7, 1-16	1.9	10
115	Configuration of microbially synthesized Pd-Au nanoparticles studied by STEM-based techniques. <i>Nanotechnology</i> , 2012 , 23, 055701	3.4	10
114	Positive-tone chemically amplified fullerene resist 2012,		6
113	TEM characterization of chemically synthesized copper g old nanoparticles. <i>Journal of Nanoparticle Research</i> , 2011 , 13, 4229-4237	2.3	13
112	Determination of the elastic properties of single microcapsules using micromanipulation and finite element modeling. <i>Chemical Engineering Science</i> , 2011 , 66, 2042-2049	4.4	46
111	Compression of elasticperfectly plastic microcapsules using micromanipulation and finite element modelling: Determination of the yield stress. <i>Chemical Engineering Science</i> , 2011 , 66, 1835-1843	4.4	20
110	Nano planar coil actuated micro paddle resonator for mass detection. <i>Microelectronic Engineering</i> , 2011 , 88, 2229-2232	2.5	2
109	The Use of Ionic and Non-Ionic Surfactants for the Control of Platinum Nanoparticle Aggregation in Proton Exchange Membrane Fuel Cells (PEMFCs). <i>ECS Transactions</i> , 2011 , 41, 2165-2173	1	3
108	Plasma etching of high-resolution features in a fullerene molecular resist 2011 ,		8
107	Fabrication of patterned surfaces by photolithographic exposure of DNA hairpins carrying a novel photolabile group. <i>Journal of Experimental Nanoscience</i> , 2010 , 5, 26-39	1.9	13
106	Design and Synthesis of Novel Calamitic and Discotic Materials Based on the Photorefractive Carbazole Unit. <i>Molecular Crystals and Liquid Crystals</i> , 2010 , 518, 84-100	0.5	4
105	Interaction of reducible polypeptide gene delivery vectors with supported lipid bilayers: pore formation and structurefunction relationships. <i>Soft Matter</i> , 2010 , 6, 2517	3.6	3
104	The swelling behaviour of thermoresponsive hydrogel/silica nanoparticle composites. <i>Journal of Materials Chemistry</i> , 2010 , 20, 4827		39
103	Organic-inorganic double shell composite microcapsules. <i>Chemical Communications</i> , 2010 , 46, 1718-20	5.8	41
102	Characterization of the effects of base additives on a fullerene chemically amplified resist 2010,		1

(2008-2010)

101	Characterisation of hollow Russian doll microspheres. <i>Journal of Materials Science</i> , 2010 , 45, 3697-3706	4.3	14
100	Tuning Specific Biomolecular Interactions Using Electro-Switchable Oligopeptide Surfaces. <i>Advanced Functional Materials</i> , 2010 , 20, 2657-2663	15.6	68
99	Preparation of Novel Banana-Shaped Triple Helical Liquid Crystals by Metal Coordination. <i>Materials</i> , 2009 , 2, 146-168	3.5	6
98	Direct electron-beam writing of highly conductive wires in functionalized fullerene films. <i>Small</i> , 2009 , 5, 2750-5	11	8
97	The adhesive properties of pyridine-terminated self-assembled monolayers. <i>Thin Solid Films</i> , 2009 , 517, 3806-3812	2.2	2
96	Microcapsules with low content of formaldehyde: preparation and characterization. <i>Journal of Materials Chemistry</i> , 2009 , 19, 6882		38
95	pH-dependent adsorption of Au nanoparticles on chemically modified Si3N4 MEMS devices. <i>Journal of Experimental Nanoscience</i> , 2009 , 4, 147-157	1.9	3
94	Low activation energy fullerene molecular resist 2009,		5
93	Spatially controlled assembly of nanomaterials at the nanoscale. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 650-4	1.3	4
92	Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. <i>Science of the Total Environment</i> , 2008 , 402, 51-61	10.2	204
91	Delivery of siRNA mediated by histidine-containing reducible polycations. <i>Journal of Controlled Release</i> , 2008 , 130, 46-56	11.7	68
90	Nanoparticles: Technological uses and environmental impact. <i>Toxicology Letters</i> , 2008 , 180, S20	4.4	
89	Combination dual responsive polypeptide vectors for enhanced gene delivery. <i>Molecular BioSystems</i> , 2008 , 4, 741-5		16
88	Photochemical fabrication of three-dimensional micro- and nano-structured surfaces from a C60 monoadduct. <i>Journal of Materials Chemistry</i> , 2008 , 18, 2016		7
87	Chemical manipulation by X-rays of functionalized thiolate self-assembled monolayers on Au. <i>Langmuir</i> , 2008 , 24, 13969-76	4	25
86	A focused-ion-beam-fabricated micro-paddle resonator for mass detection. <i>Journal of Micromechanics and Microengineering</i> , 2008 , 18, 015021	2	6
85	Chemically amplified fullerene resists for e-beam lithography 2008,		3
84	Vapour phase formation of amino functionalised Si3N4 surfaces. <i>Surface Science</i> , 2008 , 602, 2724-2733	1.8	10

83	The pH-dependent adhesion of nanoparticles to self-assembled monolayers on gold. <i>Thin Solid Films</i> , 2008 , 516, 2987-2999	2.2	9
82	Fullerene Resist Materials for the 32 nm Node and Beyond. <i>Advanced Functional Materials</i> , 2008 , 18, 1977-1982	15.6	22
81	Anomalous acid diffusion in a triphenylene molecular resist with melamine crosslinker. <i>Microelectronic Engineering</i> , 2008 , 85, 1540-1544	2.5	2
80	Electrospinning nanosuspensions loaded with passivated Au nanoparticles. <i>Tetrahedron</i> , 2008 , 64, 8476	5- <u>84</u> 83	11
79	Chemically amplified molecular resists for e-beam lithography. <i>Microelectronic Engineering</i> , 2008 , 85, 764-767	2.5	3
78	Processing and characterization of gold nanoparticles for use in plasmon probe spectroscopy and microscopy of biosystems. <i>Annals of the New York Academy of Sciences</i> , 2008 , 1130, 201-6	6.5	21
77	Fabrication of a nanoparticle gradient substrate by thermochemical manipulation of an ester functionalized SAM. <i>Journal of Materials Chemistry</i> , 2007 , 17, 5097		12
76	The influence of surface lubricity on the adhesion of Navicula perminuta and Ulva linza to alkanethiol self-assembled monolayers. <i>Journal of the Royal Society Interface</i> , 2007 , 4, 473-7	4.1	37
75	Chemical Amplification of a Triphenylene Molecular Electron Beam Resist. <i>Advanced Functional Materials</i> , 2007 , 17, 2522-2527	15.6	12
74	Suppression of pinhole defects in fullerene molecular electron beam resists. <i>Microelectronic Engineering</i> , 2007 , 84, 1066-1070	2.5	14
73	A chemically amplified fullerene-derivative molecular electron-beam resist. Small, 2007, 3, 2076-80	11	35
72	Bio-nanopatterning of Surfaces. <i>Nanoscale Research Letters</i> , 2007 , 2, 373-84	5	100
71	Engineering nanostructures at surfaces using nanolithography. <i>Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering</i> , 2007 , 221, 589-629	0.9	17
70	(LYS)(16)-based reducible polycations provide stable polyplexes with anionic fusogenic peptides and efficient gene delivery to post mitotic cells. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2007 , 1770, 1331-7	4	24
69	Electrochemically controllable conjugation of proteins on surfaces. <i>Bioconjugate Chemistry</i> , 2007 , 18, 1919-23	6.3	40
68	Chemically amplified molecular resists for electron beam lithography. <i>Microelectronic Engineering</i> , 2006 , 83, 1115-1118	2.5	30
67	Novel 3,4-disubstituted thiophenes for weak passivation of Au nanoparticles. <i>Journal of Experimental Nanoscience</i> , 2006 , 1, 143-164	1.9	3
66	pH-Dependent gold nanoparticle self-organization on functionalized Si/SiO2 surfaces. <i>Journal of Experimental Nanoscience</i> , 2006 , 1, 333-353	1.9	27

(2002-2006)

65	Fabrication of gold micro- and nanostructures by photolithographic exposure of thiol-stabilized gold nanoparticles. <i>Nano Letters</i> , 2006 , 6, 345-50	11.5	68
64	Making electrical nanocontacts to nanocrystal assemblies: mapping of room-temperature Coulomb-blockade thresholds in arrays of 28-kDa gold nanocrystals. <i>Small</i> , 2006 , 2, 261-6	11	3
63	Ultrathin fullerene films as high-resolution molecular resists for low-voltage electron-beam lithography. <i>Small</i> , 2006 , 2, 1003-6	11	22
62	e-Beam Nanolithography Integrated with Nanoassembly: Precision Chemical Engineering 2006 , 383-39	6	1
61	Design of Potentially Photorefractive Liquid Crystalline Materials: Derivatives of 3,6-Disubstituted Carbazole. <i>Crystal Growth and Design</i> , 2005 , 5, 1443-1450	3.5	34
60	Hysteresis of charge tunneling in assemblies of carboxylic acid-modified gold nanoparticles. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 8718-22	3.4	12
59	Analysis of charge transport in arrays of 28 kDa nanocrystal gold molecules. <i>Journal of Materials Chemistry</i> , 2005 , 15, 4403		24
58	A versatile reducible polycation-based system for efficient delivery of a broad range of nucleic acids. <i>Nucleic Acids Research</i> , 2005 , 33, e86	20.1	228
57	Electrostatically stabilised nanoparticles: self-organization and electron-beam patterning. <i>Journal of Nanoscience and Nanotechnology</i> , 2005 , 5, 1826-31	1.3	8
56	Precision chemical engineering: integrating nanolithography and nanoassembly. <i>Current Opinion in Colloid and Interface Science</i> , 2004 , 9, 236-248	7.6	70
55	Polymer-coated polyethylenimine/DNA complexes designed for triggered activation by intracellular reduction. <i>Journal of Gene Medicine</i> , 2004 , 6, 337-44	3.5	109
54	Gold nanoparticle patterning of silicon wafers using chemical e-beam lithography. <i>Langmuir</i> , 2004 , 20, 3766-8	4	185
53	A novel example of X-ray-radiation-induced chemical reduction of an aromatic nitro-group-containing thin film on SiO2 to an aromatic amine film. <i>ChemPhysChem</i> , 2003 , 4, 884-9	3.2	78
52	Nanostructures from nanoparticles. <i>Journal of Physics Condensed Matter</i> , 2003 , 15, S3047-S3063	1.8	19
51	Triphenylene/Carbazole Mesogens and Their Electrochemistry. <i>Molecular Crystals and Liquid Crystals</i> , 2003 , 397, 99-116	0.5	14
50	TOWARD BORONATE ESTER MESOGENIC STRUCTURES. <i>Molecular Crystals and Liquid Crystals</i> , 2003 , 399, 93-114	0.5	8
49	Multi-adduct derivatives of C60 for electron beam nano-resists. <i>Microelectronic Engineering</i> , 2002 , 61-62, 737-743	2.5	4
48	Dialkyl Sulfides: Novel Passivating Agents for Gold Nanoparticles. <i>Langmuir</i> , 2002 , 18, 1791-1795	4	70

47	Introduction of bis-discotic and bis-calamitic mesogenic addends to C 60. <i>Liquid Crystals</i> , 2002 , 29, 497-5	5045	13
46	Towards Banana-Shaped Liquid Crystals Incorporating Carbazole. Ferroelectrics, 2002, 276, 103-126	0.6	10
45	HREELS studies of gold nanoparticles with dialkyl sulphide ligands. Surface Science, 2002, 502-503, 208-	21.8	12
44	Improved Sensitivity of Multi-adduct Derivatives of Fullerene <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2001 , 14, 543-546	0.7	2
43	The X-Ray Crystal Structures and Computational Analysis of NHIHydrogen Bonded Banana-Shaped Carbazole Derivatives and Thermal Analysis of Higher Mesogenic Homologues. <i>Molecular Crystals and Liquid Crystals</i> , 2001 , 369, 17-35		7
42	The first hexagonal columnar discotic liquid crystalline carbazole derivatives induced by noncovalent Interactions. <i>Journal of Materials Chemistry</i> , 2001 , 11, 2790-2800		56
41	Intermolecular organisation of triphenylene-baseddiscotic mesogens by interdigitation of alkyl chains. <i>Journal of Materials Chemistry</i> , 2001 , 11, 302-311		53
40	A photochemically driven molecular-level abacus. <i>Chemistry - A European Journal</i> , 2000 , 6, 3558-74	4.8	267
39	The Idiosyncrasies of Tetrabenzo[24]crown-8 in the Solid State. <i>Tetrahedron</i> , 2000 , 56, 6675-6681	2.4	38
38	A triphenylene derivative as a novel negative/positive tone resist of 10 nanometer resolution. <i>Microelectronic Engineering</i> , 2000 , 53, 425-428	2.5	24
37	Polysubstituted derivatives of triphenylene as high resolution electron beam resists for nanolithography. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2000 , 18, 2730		17
36	The first hexagonal columnar discotic liquid crystalline carbazole derivative. <i>Liquid Crystals</i> , 2000 , 27, 703-706	2.3	15
35	Intermolecular organization of triphenylene-based discotic mesogens by interdigitation of alkyl chains. <i>Liquid Crystals</i> , 2000 , 27, 689-692	2.3	19
34	Introduction of [2]Catenanes into Langmuir Films and Langmuir B lodgett Multilayers. A Possible Strategy for Molecular Information Storage Materials. <i>Langmuir</i> , 2000 , 16, 1924-1930	4	61
33	Nanotribological Properties of Unsymmetrical n-Dialkyl Sulfide Monolayers on Gold: Effect of Chain Length on Adhesion, Friction, and Imaging. <i>Langmuir</i> , 2000 , 16, 3249-3256	4	60
32	Heterosupramolecular Chemistry: Recognition Initiated and Inhibited Silver Nanocrystal Aggregation by Pseudorotaxane Assembly. <i>Journal of the American Chemical Society</i> , 2000 , 122, 6252-6	2 5 64	71
31	A Photochemically Driven Molecular-Level Abacus 2000 , 6, 3558		1
30	Secondary dibenzylammonium ion binding by [24]crown-8 and [25]crown-8 macrocycles. <i>Tetrahedron Letters</i> , 1999 , 40, 3661-3664	2	47

[1996-1999]

29	Exposure mechanism of fullerene derivative electron beam resists. <i>Chemical Physics Letters</i> , 1999 , 312, 469-474	2.5	23
28	⊞eterosupramolekulare□Chemie: programmierte Pseudorotaxan-Selbstorganisation an einer Nanokristalloberfl©he. <i>Angewandte Chemie</i> , 1999 , 111, 1220-1224	3.6	6
27	Heterosupramolecular chemistry: programmed pseudorotaxane assembly at the surface of a nanocrystal. <i>Angewandte Chemie - International Edition</i> , 1999 , 38, 1147-50	16.4	84
26	Diazapyrenium-containing catenanes and rotaxanes. <i>New Journal of Chemistry</i> , 1999 , 23, 587-602	3.6	59
25	10 nm scale electron beam lithography using a triphenylene derivative as a negative/positive tone resist. <i>Journal Physics D: Applied Physics</i> , 1999 , 32, L75-L78	3	37
24	Molecular Recognition-Induced Function and Competitive Replacement by Hydrogen-Bonding Interactions: Amphiphilic Barbituric Acid Derivatives, 2,4,6-Triaminopyrimidine, and Related Structures at the AirWater Interface. <i>Langmuir</i> , 1999 , 15, 174-184	4	46
23	Anion-Orchestrated Formation in the Crystalline State of [2]Pseudorotaxane Arrays. <i>Organic Letters</i> , 1999 , 1, 1917-1920	6.2	25
22	Electron beam induced fragmentation of fullerene derivatives. Chemical Physics Letters, 1998, 289, 586	-599	33
21	Rull-Polypyridine Complexes Covalently Linked to Electron Acceptors as Wires for Light-Driven Pseudorotaxane-Type Molecular Machines. <i>Chemistry - A European Journal</i> , 1998 , 4, 2413-2422	4.8	68
20	A Fullerene derivative as an electron beam resist for nanolithography. <i>Applied Physics Letters</i> , 1998 , 72, 1302-1304	3.4	67
19	Rull-Polypyridine Complexes Covalently Linked to Electron Acceptors as Wires for Light-Driven Pseudorotaxane-Type Molecular Machines 1998 , 4, 2413		1
18	Towards a Molecular Anchor Chain. Synthesis and Catenations of Spiro Crown Ethers. <i>Synthesis</i> , 1997 , 1997, 480-488	2.9	9
17	Detecting a transition-metal ammine at tailored surfaces. <i>Journal of Materials Chemistry</i> , 1997 , 7, 1147-	1154	4
16	A self-complexing macrocycle acting as a chromophoric receptor. <i>Tetrahedron Letters</i> , 1997 , 38, 3635-3	6 <u>3</u> 8	25
15	Self-Assembly of the First Fullerene-Containing [2]Catenane. <i>Angewandte Chemie International Edition in English</i> , 1997 , 36, 1448-1451		52
14	Aufbau des ersten Fulleren-haltigen [2]Catenans durch Selbstorganisation. <i>Angewandte Chemie</i> , 1997 , 109, 1611-1614	3.6	11
13	Simple Mechanical Molecular and Supramolecular Machines: Photochemical and Electrochemical Control of Switching Processes. <i>Chemistry - A European Journal</i> , 1997 , 3, 152-170	4.8	182
12	Towards supramolecular polymers. <i>Macromolecular Symposia</i> , 1996 , 102, 1-8	0.8	8

11	The art and science of self-assembling molecular machines. <i>Nanotechnology</i> , 1996 , 7, 183-192	3.4	99
10	Self-organization of amphiphilic N-acylated linear polyethyleneimines: investigation of a reversible monolayer collapse. <i>Thin Solid Films</i> , 1996 , 284-285, 304-307	2.2	9
9	Langmuir films and Langmuir-Blodgett multilayers incorporating mechanically-threaded molecules-pseudorotaxanes. <i>Thin Solid Films</i> , 1996 , 284-285, 671-677	2.2	20
8	Bis[2]catenanes and a bis[2]rotaxaneModel Compounds for Polymers with Mechanically Interlocked Components. <i>Chemistry - A European Journal</i> , 1996 , 2, 31-44	4.8	79
7	Towards mechanically-linked polymers. <i>Macromolecular Symposia</i> , 1995 , 98, 527-540	0.8	9
6	Towards Molecular and Supramolecular Devices 1995 , 1-8		2
5	The Self-Assembly of Redox-Active and Photo-Active Catenanes and Rotaxanes 1995, 1-28		5
4	Template-Directed Syntheses of a Bis[2]catenane and a Bis[2]rotaxane - Towards Self-Assembling Polymers. <i>Synlett</i> , 1994 , 1994, 789-792	2.2	16
3	The Self-Assembly and Dynamic Properties of Thiophene-Containing [2]Catenanes. <i>Synthesis</i> , 1994 , 1994, 1344-1352	2.9	19
2	Molecular organization via ionic interactions at interfaces. 1. Monolayers and LB films of cyclic bisbipyridinium tetracations and dimyristoylphosphatidic acid. <i>Langmuir</i> , 1993 , 9, 1534-1544	4	93
1	Combined Experimental and Computational Study of Polycyclic Aromatic Compound Aggregation: The Impact of Solvent Composition. <i>Polycyclic Aromatic Compounds</i> ,1-20	1.3	