Shuxin Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8738996/publications.pdf Version: 2024-02-01

SHIIVIN DEN

#	Article	IF	CITATIONS
1	Roles of melatonin in abiotic stress resistance in plants. Journal of Experimental Botany, 2015, 66, 647-656.	4.8	512
2	Melatonin promotes waterâ€stress tolerance, lateral root formation, and seed germination in cucumber (<i>Cucumis sativus</i> L.). Journal of Pineal Research, 2013, 54, 15-23.	7.4	499
3	Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. Journal of Experimental Botany, 2015, 66, 657-668.	4.8	308
4	Arabidopsis Transcriptome Analysis Reveals Key Roles of Melatonin in Plant Defense Systems. PLoS ONE, 2014, 9, e93462.	2.5	288
5	The <scp>RNA</scp> â€seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. Journal of Pineal Research, 2014, 56, 39-50.	7.4	263
6	Melatonin Improved Anthocyanin Accumulation by Regulating Gene Expressions and Resulted in High Reactive Oxygen Species Scavenging Capacity in Cabbage. Frontiers in Plant Science, 2016, 7, 197.	3.6	117
7	Melatonin Alleviates Copper Toxicity via Improving Copper Sequestration and ROS Scavenging in Cucumber. Plant and Cell Physiology, 2019, 60, 562-574.	3.1	92
8	Hormone profiling and transcription analysis reveal a major role ofÂABA in tomato salt tolerance. Plant Physiology and Biochemistry, 2014, 77, 23-34.	5.8	77
9	CsATAF1 Positively Regulates Drought Stress Tolerance by an ABA-Dependent Pathway and by Promoting ROS Scavenging in Cucumber. Plant and Cell Physiology, 2018, 59, 930-945.	3.1	74
10	Regulation of Telomerase in Arabidopsis by BT2, an Apparent Target of TELOMERASE ACTIVATOR1. Plant Cell, 2007, 19, 23-31.	6.6	69
11	Plasma Membrane Intrinsic Proteins SIPIP2;1, SIPIP2;7 and SIPIP2;5 Conferring Enhanced Drought Stress Tolerance in Tomato. Scientific Reports, 2016, 6, 31814.	3.3	61
12	Melatonin acts synergistically with auxin to promote lateral root development through fine tuning auxin transport in Arabidopsis thaliana. PLoS ONE, 2019, 14, e0221687.	2.5	54
13	Melatonin promotes carotenoid biosynthesis in an ethylene-dependent manner in tomato fruits. Plant Science, 2020, 298, 110580.	3.6	54
14	Overexpression of BoNAC019, a NAC transcription factor from Brassica oleracea, negatively regulates the dehydration response and anthocyanin biosynthesis in Arabidopsis. Scientific Reports, 2018, 8, 13349.	3.3	46
15	TELOMERASE ACTIVATOR1 Induces Telomerase Activity and Potentiates Responses to Auxin in Arabidopsis. Plant Cell, 2004, 16, 2910-2922.	6.6	43
16	<scp><i>SITLFP8</i></scp> reduces water loss to improve waterâ€use efficiency by modulating cell size and stomatal density via endoreduplication. Plant, Cell and Environment, 2020, 43, 2666-2679.	5.7	43
17	SoHSC70 positively regulates thermotolerance by alleviating cell membrane damage, reducing ROS accumulation, and improving activities of antioxidant enzymes. Plant Science, 2019, 283, 385-395.	3.6	29
18	The jasmonateâ€induced bHLH gene <i>SlJIG</i> functions in terpene biosynthesis and resistance to insects and fungus. Journal of Integrative Plant Biology, 2022, 64, 1102-1115.	8.5	27

Shuxin Ren

#	Article	IF	CITATIONS
19	Influencing factors and structural characterization of hyperhydricity of in vitro regeneration in Brassica oleracea var. italica. Canadian Journal of Plant Science, 2011, 91, 159-165.	0.9	24
20	Salt tolerance in soybean WF-7 is partially regulated by ABA and ROS signaling and involves withholding toxic Clâ^' ions from aerial tissues. Plant Cell Reports, 2012, 31, 1527-1533.	5.6	23
21	Heat shockâ€induced cold acclimation in cucumber through <scp><i>CsHSFA1d</i></scp> â€activated <scp>JA</scp> biosynthesis and signaling. Plant Journal, 2022, 111, 85-102.	5.7	22
22	Knockdown of a cellulose synthase gene BoiCesA affects the leaf anatomy, cellulose content and salt tolerance in broccoli. Scientific Reports, 2017, 7, 41397.	3.3	16
23	PvNAC1 increases biomass and enhances salt tolerance by decreasing Na+ accumulation and promoting ROS scavenging in switchgrass (Panicum virgatum L.). Plant Science, 2019, 280, 66-76.	3.6	15
24	The mechanism underlying fast germination of tomato cultivar LA2711. Plant Science, 2015, 238, 241-250.	3.6	7
25	First Report of Fusarium Yellows and Rhizome Rot Caused by Fusarium oxysporum f. sp. zingiberi on Ginger in the Continental United States. Plant Disease, 2021, , .	1.4	5
26	Soil and microbe interactions in two populations of Appalachian black cohosh (Actaea racemosa L.)1. Journal of the Torrey Botanical Society, 2021, 148, .	0.3	0