
Farshad Ameri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8738898/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Difference between geopolymers and alkali-activated materials. , 2022, , 421-435.		2
2	Quarry dust. , 2022, , 507-543.		2
3	Lightweight geopolymer concrete: A critical review on the feasibility, mixture design, durability properties, and microstructure. Ceramics International, 2022, 48, 10347-10371.	2.3	38
4	Mechanical and gamma-ray shielding properties and environmental benefits of concrete incorporating GGBFS and copper slag. Journal of Building Engineering, 2021, 33, 101615.	1.6	26
5	Alkali-activated slag (AAS) paste: Correlation between durability and microstructural characteristics. Construction and Building Materials, 2021, 267, 120886.	3.2	77
6	Comparative study on the effect of fiber type and content on the fire resistance of alkali-activated slag composites. Construction and Building Materials, 2021, 288, 123136.	3.2	23
7	Physico-mechanical properties and micromorphology of AAS mortars containing copper slag as fine aggregate at elevated temperature. Journal of Building Engineering, 2021, 39, 102289.	1.6	13
8	Modern heavyweight concrete shielding: Principles, industrial applications and future challenges; review. Journal of Building Engineering, 2021, 39, 102290.	1.6	20
9	Steel fibre-reinforced high-strength concrete incorporating copper slag: Mechanical, gamma-ray shielding, impact resistance, and microstructural characteristics. Journal of Building Engineering, 2020, 29, 101118.	1.6	27
10	Zero-cement vs. cementitious mortars: An experimental comparative study on engineering and environmental properties. Journal of Building Engineering, 2020, 32, 101620.	1.6	16
11	Partial replacement of copper slag with treated crumb rubber aggregates in alkali-activated slag mortar. Construction and Building Materials, 2020, 256, 119468.	3.2	78
12	Glass powder as a partial precursor in Portland cement and alkali-activated slag mortar: A comprehensive comparative study. Construction and Building Materials, 2020, 251, 118991.	3.2	68
13	Effect of nano-silica slurry on engineering, X-ray, and γ-ray attenuation characteristics of steel slag high-strength heavyweight concrete. Nanotechnology Reviews, 2020, 9, 1245-1264.	2.6	8
14	Green high strength concrete containing recycled waste ceramic aggregates and waste carpet fibers: Mechanical, durability, and microstructural properties. Journal of Building Engineering, 2019, 26, 100914.	1.6	61
15	Optimum rice husk ash content and bacterial concentration in self-compacting concrete. Construction and Building Materials, 2019, 222, 796-813.	3.2	88
16	Waste ceramic powder-based geopolymer mortars: Effect of curing temperature and alkaline solution-to-binder ratio. Construction and Building Materials, 2019, 227, 116686.	3.2	87
17	Ambient-cured alkali-activated slag paste incorporating micro-silica as repair material: Effects of alkali activator solution on physical and mechanical properties. Construction and Building Materials, 2019, 229, 116911.	3.2	46
18	Geopolymers vs. alkali-activated materials (AAMs): A comparative study on durability, microstructure, and resistance to elevated temperatures of lightweight mortars. Construction and Building Materials, 2019, 222, 49-63.	3.2	84

Farshad Ameri

#	Article	IF	CITATIONS
19	Performance of sustainable high strength concrete with basic oxygen steel-making (BOS) slag and nano-silica. Journal of Building Engineering, 2019, 25, 100791.	1.6	62
20	Recycled ceramic waste high strength concrete containing wollastonite particles and micro-silica: A comprehensive experimental study. Construction and Building Materials, 2019, 201, 11-32.	3.2	87
21	Microstructure, strength, and durability of eco-friendly concretes containing sugarcane bagasse ash. Construction and Building Materials, 2018, 184, 258-268.	3.2	121
22	Rice husk ash as a partial replacement of cement in high strength concrete containing micro silica: Evaluating durability and mechanical properties. Case Studies in Construction Materials, 2017, 7, 73-81.	0.8	156
23	Partial Replacement of Limestone and Silica Powder as a Substitution of Cement in Lightweight Aggregate Concrete. Civil Engineering Journal (Iran), 2017, 3, 627-640.	1.2	5
24	Experimental Evaluation of Eco-friendly Light Weight Concrete with Optimal Level of Rice Husk Ash Replacement. Civil Engineering Journal (Iran), 2017, 3, 972.	1.2	8