Dang Sheng Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8738052/publications.pdf

Version: 2024-02-01

192 papers

20,009 citations

71 h-index 137 g-index

215 all docs

215 docs citations

times ranked

215

20866 citing authors

#	Article	IF	CITATIONS
1	Methanol conversion on borocarbonitride catalysts: Identification and quantification of active sites. Science Advances, 2020, 6, eaba5778.	10.3	45
2	Dynamic Interplay between Copper Tetramers and Iron Oxide Boosting CO ₂ Conversion to Methanol and Hydrocarbons under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 14435-14442.	6.7	19
3	MoO _{<i>x</i>} Nanoparticle Catalysts for <scp>d</scp> -Glucose Epimerization and Their Electrical Immobilization in a Continuous Flow Reactor. ACS Applied Materials & Diterfaces, 2019, 11, 44118-44123.	8.0	2
4	Atomic-Scale Observation of Bimetallic Au-CuO <i>_{<i>x</i>}</i> Nanoparticles and Their Interfaces for Activation of CO Molecules. ACS Applied Materials & Interfaces, 2019, 11, 35468-35478.	8.0	20
5	Investigation of Electron Momentum Density in Carbon Nanotubes Using Transmission Electron Microscopy. Microscopy and Microanalysis, 2019, 25, 1155-1159.	0.4	1
6	Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nature Communications, 2019, 10, 4500.	12.8	279
7	Wet-Chemistry Strong Metal–Support Interactions in Titania-Supported Au Catalysts. Journal of the American Chemical Society, 2019, 141, 2975-2983.	13.7	280
8	Diffusion-Limited Formation of Nonequilibrium Intermetallic Nanophase for Selective Dehydrogenation. Nano Letters, 2019, 19, 4380-4383.	9.1	10
9	N-Doped 3D Mesoporous Carbon/Carbon Nanotubes Monolithic Catalyst for H ₂ S Selective Oxidation. ACS Applied Nano Materials, 2019, 2, 3780-3792.	5.0	43
10	Combined study of the ground and excited states in the transformation of nanodiamonds into carbon onions by electron energy-loss spectroscopy. Scientific Reports, 2019, 9, 3784.	3.3	15
11	A Deoximation Method for Deprotection of Ketones and Aldhydes Using a Grapheneâ€Oxideâ€Based Coâ€catalysts System. Advanced Synthesis and Catalysis, 2019, 361, 3137-3145.	4.3	10
12	Visualizing Formation of Intermetallic PdZn in a Palladium/Zinc Oxide Catalyst: Interfacial Fertilization by PdH x. Angewandte Chemie, 2019, 131, 4276-4281.	2.0	6
13	Rýcktitelbild: Visualizing Formation of Intermetallic PdZn in a Palladium/Zinc Oxide Catalyst: Interfacial Fertilization by PdH _{<i>x</i>} (Angew. Chem. 13/2019). Angewandte Chemie, 2019, 131, 4458-4458.	2.0	0
14	Visualizing Formation of Intermetallic PdZn in a Palladium/Zinc Oxide Catalyst: Interfacial Fertilization by PdH _{<i>x</i>} . Angewandte Chemie - International Edition, 2019, 58, 4232-4237.	13.8	56
15	Valorisation of Biomass Derived Furfural and Levulinic Acid by Highly Efficient Pd@ND Catalyst. Energy Technology, 2019, 7, 269-276.	3.8	12
16	Lattice Strained Ni-Co alloy as a High-Performance Catalyst for Catalytic Dry Reforming of Methane. ACS Catalysis, 2019, 9, 2693-2700.	11.2	124
17	Oxidative Dehydrogenation on Nanocarbon: Revealing the Reaction Mechanism via In Situ Experimental Strategies. ChemCatChem, 2019, 11, 397-400.	3.7	9
18	Phosphorus oxide clusters stabilized by carbon nanotubes for selective isomerization and dehydrogenation of \hat{l}^2 -isopentene. Catalysis Science and Technology, 2018, 8, 1522-1527.	4.1	11

#	Article	IF	CITATIONS
19	Revealing the Janus Character of the Coke Precursor in the Propane Direct Dehydrogenation on Pt Catalysts from a kMC Simulation. ACS Catalysis, 2018, 8, 4694-4704.	11.2	85
20	Oxidative Dehydrogenation on Nanocarbon: Insights into the Reaction Mechanism and Kinetics via in Situ Experimental Methods. Accounts of Chemical Research, 2018, 51, 640-648.	15.6	87
21	An Efficient Metalâ€Free Catalyst for Oxidative Dehydrogenation Reaction: Activated Carbon Decorated with Fewâ€Layer Graphene. ChemSusChem, 2018, 11, 536-541.	6.8	14
22	Pd–P nanoalloys supported on a porous carbon frame as an efficient catalyst for benzyl alcohol oxidation. Catalysis Science and Technology, 2018, 8, 2333-2339.	4.1	18
23	Nanodiamondâ€Coreâ€Reinforced, Grapheneâ€Shellâ€Immobilized Platinum Nanoparticles as a Highly Active Catalyst for the Lowâ€Temperature Dehydrogenation of <i>n</i>)â€Butane. ChemCatChem, 2018, 10, 520-524.	3.7	15
24	Innenrücktitelbild: A Heterogeneous Metalâ€Free Catalyst for Hydrogenation: Lewis Acid–Base Pairs Integrated into a Carbon Lattice (Angew. Chem. 42/2018). Angewandte Chemie, 2018, 130, 14131-14131.	2.0	0
25	Catalysis by hybrid sp ² /sp ³ nanodiamonds and their role in the design of advanced nanocarbon materials. Chemical Society Reviews, 2018, 47, 8438-8473.	38.1	130
26	Ti ₃ C ₂ T _{<i>x</i>} MXene Catalyzed Ethylbenzene Dehydrogenation: Active Sites and Mechanism Exploration from both Experimental and Theoretical Aspects. ACS Catalysis, 2018, 8, 10051-10057.	11,2	79
27	Biomassâ€Derived Grapheneâ€like Carbon: Efficient Metalâ€Free Carbocatalysts for Epoxidation. Angewandte Chemie - International Edition, 2018, 57, 16898-16902.	13.8	83
28	Graphenâ€ÃĦnlicher Kohlenstoff aus Biomasse: effiziente metallfreie Kohlenstoffkatalysatoren fÃ⅓r Epoxidierungen. Angewandte Chemie, 2018, 130, 17141-17145.	2.0	4
29	Electrocatalytic Water Oxidation at Quinone-on-Carbon: A Model System Study. Journal of the American Chemical Society, 2018, 140, 14717-14724.	13.7	48
30	Phosphorus-doped onion-like carbon for CO ₂ electrochemical reduction: the decisive role of the bonding configuration of phosphorus. Journal of Materials Chemistry A, 2018, 6, 19998-20004.	10.3	51
31	Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nature Catalysis, 2018, 1, 540-546.	34.4	297
32	A Heterogeneous Metalâ€Free Catalyst for Hydrogenation: Lewis Acid–Base Pairs Integrated into a Carbon Lattice. Angewandte Chemie - International Edition, 2018, 57, 13800-13804.	13.8	64
33	A Heterogeneous Metalâ€Free Catalyst for Hydrogenation: Lewis Acid–Base Pairs Integrated into a Carbon Lattice. Angewandte Chemie, 2018, 130, 13996-14000.	2.0	6
34	Probing the enhanced catalytic activity of carbon nanotube supported Ni-LaO _x hybrids for the CO ₂ reduction reaction. Nanoscale, 2018, 10, 14207-14219.	5.6	36
35	Oxidative Dehydrogenation on Nanocarbon: Revealing the Catalytic Mechanism using Model Catalysts. ACS Catalysis, 2017, 7, 1424-1427.	11,2	48
36	Photoactive materials based on semiconducting nanocarbons – A challenge opening new possibilities for photocatalysis. Journal of Energy Chemistry, 2017, 26, 207-218.	12.9	31

#	Article	IF	Citations
37	Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbonâ€Nanotubeâ€Based Electrocatalyst. Angewandte Chemie, 2017, 129, 2743-2747.	2.0	98
38	Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbonâ€Nanotubeâ€Based Electrocatalyst. Angewandte Chemie - International Edition, 2017, 56, 2699-2703.	13.8	516
39	Correlation between Microstructure Evolution of a Wellâ€Defined Cubic Palladium Catalyst and Selectivity during Acetylene Hydrogenation. ChemCatChem, 2017, 9, 3435-3439.	3.7	9
40	High performance of nitrogen-modified carbon nanotubes for selective oxidation of allyl alcohol. Catalysis Science and Technology, 2017, 7, 1279-1283.	4.1	9
41	Decisive Intermediates Responsible for the Carbonaceous Products of CO ₂ Electroâ€reduction on Nitrogenâ€Doped sp ² Nanocarbon Catalysts in NaHCO ₃ Aqueous Electrolyte. ChemElectroChem, 2017, 4, 1274-1278.	3.4	9
42	Carbokatalyse in Flýssigphasenreaktionen. Angewandte Chemie, 2017, 129, 956-985.	2.0	37
43	Revealing the Role of sp ² @sp ³ Structure of Nanodiamond in Direct Dehydrogenation: Insight from DFT study. ACS Catalysis, 2017, 7, 3779-3785.	11.2	29
44	Remarkable effect of alkalis on the chemoselective hydrogenation of functionalized nitroarenes over high-loading Pt/FeO _x catalysts. Chemical Science, 2017, 8, 5126-5131.	7.4	90
45	Direct Insight into Ethane Oxidative Dehydrogenation over Boron Nitrides. ChemCatChem, 2017, 9, 3293-3297.	3.7	112
46	Self-Propagated Flaming Synthesis of Highly Active Layered CuO-Î-MnO ₂ Hybrid Composites for Catalytic Total Oxidation of Toluene Pollutant. ACS Applied Materials & Samp; Interfaces, 2017, 9, 21798-21808.	8.0	91
47	In Situ Electrostatic Modulation of Path Selectivity for the Oxygen Reduction Reaction on Fe–N Doped Carbon Catalyst. Chemistry of Materials, 2017, 29, 4649-4653.	6.7	23
48	Origin of the Robust Catalytic Performance of Nanodiamond–Graphene-Supported Pt Nanoparticles Used in the Propane Dehydrogenation Reaction. ACS Catalysis, 2017, 7, 3349-3355.	11.2	85
49	The Coulombic Nature of Active Nitrogen Sites in N-Doped Nanodiamond Revealed In Situ by Ionic Surfactants. ACS Catalysis, 2017, 7, 3295-3300.	11.2	20
50	Insights into the surface chemistry and electronic properties of sp ² and sp ³ -hybridized nanocarbon materials for catalysis. Chemical Communications, 2017, 53, 4834-4837.	4.1	41
51	Hydrothermal Carbon Enriched with Oxygenated Groups from Biomass Glucose as an Efficient Carbocatalyst. Angewandte Chemie - International Edition, 2017, 56, 600-604.	13.8	51
52	Hydrothermal Carbon Enriched with Oxygenated Groups from Biomass Glucose as an Efficient Carbocatalyst. Angewandte Chemie, 2017, 129, 615-619.	2.0	23
53	Hierarchical porous carbon fibers/carbon nanofibers monolith from electrospinning/CVD processes as a high effective surface area support platform. Journal of Materials Chemistry A, 2017, 5, 2151-2162.	10.3	48
54	A Facile and Efficient Method to Fabricate Highly Selective Nanocarbon Catalysts for Oxidative Dehydrogenation. ChemSusChem, 2017, 10, 353-358.	6.8	19

#	Article	IF	CITATIONS
55	A green and economical vapor-assisted ozone treatment process for surface functionalization of carbon nanotubes. Green Chemistry, 2017, 19, 1052-1062.	9.0	36
56	Classical strong metal–support interactions between gold nanoparticles and titanium dioxide. Science Advances, 2017, 3, e1700231.	10.3	361
57	Improving the Alkene Selectivity of Nanocarbon-Catalyzed Oxidative Dehydrogenation of <i>n</i> -Butane by Refinement of Oxygen Species. ACS Catalysis, 2017, 7, 7305-7311.	11.2	28
58	Agl Nanoparticles Evenly Dispersed on 2D Porous Bi ₅ O ₇ I Sheets: Simple Synthesis and Excellent Photocatalytic Performance. ChemistrySelect, 2017, 2, 8535-8540.	1.5	10
59	CO ₂ electoreduction reaction on heteroatom-doped carbon cathode materials. Journal of Materials Chemistry A, 2017, 5, 21596-21603.	10.3	60
60	Hierarchically structured reactors containing nanocarbons for intensification of chemical reactions. Journal of Materials Chemistry A, 2017, 5, 22408-22441.	10.3	23
61	The tunable effect of nitrogen and boron dopants on a single walled carbon nanotube support on the catalytic properties of a single gold atom catalyst: a first principles study of CO oxidation. Journal of Materials Chemistry A, 2017, 5, 16653-16662.	10.3	58
62	Molybdenum Carbide Modified Nanocarbon Catalysts for Alkane Dehydrogenation Reactions. ACS Catalysis, 2017, 7, 5820-5827.	11.2	55
63	High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nature Communications, 2017, 8, 15938.	12.8	569
64	Room-Temperature Electrocatalytic Synthesis of NH ₃ from H ₂ O and N ₂ in a Gas–Liquid–Solid Three-Phase Reactor. ACS Sustainable Chemistry and Engineering, 2017, 5, 7393-7400.	6.7	158
65	Graphitized nanocarbon-supported metal catalysts: synthesis, properties, and applications in heterogeneous catalysis. Science China Materials, 2017, 60, 1149-1167.	6.3	13
66	Determination of the acidic properties of carboxylated carbocatalysts in an acid-catalyzed ring-opening reaction using kinetic profiling. Nano Research, 2017, 10, 2954-2965.	10.4	5
67	Efficient and Highly Selective Solventâ€Free Oxidation of Primary Alcohols to Aldehydes Using Bucky Nanodiamond. ChemSusChem, 2017, 10, 3497-3505.	6.8	14
68	Carbocatalysis in Liquidâ€Phase Reactions. Angewandte Chemie - International Edition, 2017, 56, 936-964.	13.8	209
69	Selective and Stable Ethylbenzene Dehydrogenation to Styrene over Nanodiamonds under Oxygenâ€lean Conditions. ChemSusChem, 2016, 9, 662-666.	6.8	43
70	Revealing the Origin of Activity in Nitrogenâ€Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide. ChemSusChem, 2016, 9, 1085-1089.	6.8	143
71	Heteropoly Acid/Nitrogen Functionalized Onionâ€like Carbon Hybrid Catalyst for Ester Hydrolysis Reactions. Chemistry - an Asian Journal, 2016, 11, 491-497.	3.3	14
72	Multiâ€Walled Carbon Nanotubes as a Catalyst for Gasâ€Phase Oxidation of Ethanol to Acetaldehyde. ChemSusChem, 2016, 9, 1820-1826.	6.8	24

#	Article	IF	CITATIONS
73	Research Progress on the Indirect Hydrogenation of Carbon Dioxide to Methanol. ChemSusChem, 2016, 9, 322-332.	6.8	90
74	Research Progress on the Indirect Hydrogenation of Carbon Dioxide to Methanol. ChemSusChem, 2016, 9, 315-315.	6.8	3
75	Designing graphene as a new frustrated Lewis pair catalyst for hydrogen activation by co-doping. Physical Chemistry Chemical Physics, 2016, 18, 11120-11124.	2.8	46
76	Rational Design of Zirconiumâ€doped Titania Photocatalysts with Synergistic Brønsted Acidity and Photoactivity. ChemSusChem, 2016, 9, 2759-2764.	6.8	4
77	The influence of carbon surface chemistry on supported palladium nanoparticles in heterogeneous reactions. Journal of Colloid and Interface Science, 2016, 480, 175-183.	9.4	16
78	Enhanced Chemoselective Hydrogenation through Tuning the Interaction between Pt Nanoparticles and Carbon Supports: Insights from Identical Location Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy. ACS Catalysis, 2016, 6, 7844-7854.	11.2	161
79	Conjugated polymers with defined chemical structure as model carbon catalysts for nitro reduction. RSC Advances, 2016, 6, 99570-99576.	3.6	7
80	Ru-Cluster-Modified Ni Surface Defects toward Selective Bond Breaking between C b>â \in "O and C b>â \in "C. Chemistry of Materials, 2016, 28, 4751-4761.	6.7	37
81	The Unexpected Reactivity of the Carbon Sites on the Nanostructured Carbon Catalysts towards the Câ^'H Bond Activation from the Analysis of the Aromaticity. Chemistry - an Asian Journal, 2016, 11, 1668-1671.	3.3	10
82	Palladium Supported on Nanodiamonds as an Efficient Catalyst for the Hydrogenating Deamination of Benzonitrile and Related Compounds. ChemCatChem, 2016, 8, 922-928.	3.7	17
83	Mesoporous boron-doped onion-like carbon as long-life oxygen electrode for sodium–oxygen batteries. Journal of Materials Chemistry A, 2016, 4, 6610-6619.	10.3	46
84	N-doped onion-like carbon as an efficient oxygen electrode for long-life Li–O ₂ battery. Journal of Materials Chemistry A, 2016, 4, 2128-2136.	10.3	64
85	Identifying active sites of CoNC/CNT from pyrolysis of molecularly defined complexes for oxidative esterification and hydrogenation reactions. Catalysis Science and Technology, 2016, 6, 1007-1015.	4.1	80
86	A fast transfer-free synthesis of high-quality monolayer graphene on insulating substrates by a simple rapid thermal treatment. Nanoscale, 2016, 8, 2594-2600.	5.6	20
87	Advanced Electron Microscopy and Spectroscopy for Catalysis. ChemCatChem, 2015, 7, 3598-3600.	3.7	3
88	Detection of interlayer interaction in few-layer graphene. Physical Review B, 2015, 92, .	3.2	22
89	Secondary batteries with multivalent ions for energy storage. Scientific Reports, 2015, 5, 14120.	3.3	125
90	Communication: Investigation of the electron momentum density distribution of nanodiamonds by electron energy-loss spectroscopy. Journal of Chemical Physics, 2015, 143, 211102.	3.0	5

#	Article	IF	Citations
91	Bio-inspired Construction of Advanced Fuel Cell Cathode with Pt Anchored in Ordered Hybrid Polymer Matrix. Scientific Reports, 2015, 5, 16100.	3.3	48
92	Synergistic Effect of Nitrogen in Cobalt Nitride and Nitrogenâ€Doped Hollow Carbon Spheres for the Oxygen Reduction Reaction. ChemCatChem, 2015, 7, 1826-1832.	3.7	62
93	Oxidative Dehydrogenation on Nanocarbon: Intrinsic Catalytic Activity and Structure–Function Relationships. Angewandte Chemie - International Edition, 2015, 54, 13682-13685.	13.8	76
94	Probing the Metal–Support Interaction in Carbonâ€Supported Catalysts by using Electron Microscopy. ChemCatChem, 2015, 7, 3639-3645.	3.7	69
95	Direct Methylation of Amines with Carbon Dioxide and Molecular Hydrogen using Supported Gold Catalysts. ChemSusChem, 2015, 8, 3489-3496.	6.8	80
96	Order of Activity of Nitrogen, Iron Oxide, and FeN _{<i>x</i>} Complexes towards Oxygen Reduction in Alkaline Medium. ChemSusChem, 2015, 8, 4016-4021.	6.8	26
97	Hierarchical Nitrogenâ€Doped Graphene/Carbon Nanotube Composite Cathode for Lithium–Oxygen Batteries. ChemSusChem, 2015, 8, 3973-3976.	6.8	50
98	The Effect of Different Phosphorus Chemical States on an Onionâ€like Carbon Surface for the Oxygen Reduction Reaction. ChemSusChem, 2015, 8, 2872-2876.	6.8	29
99	Facile Synthesis of Au Nanoparticles Embedded in an Ultrathin Hollow Graphene Nanoshell with Robust Catalytic Performance. Small, 2015, 11, 5059-5064.	10.0	69
100	Stabilization of Palladium Nanoparticles on Nanodiamond–Graphene Core–Shell Supports for CO Oxidation. Angewandte Chemie - International Edition, 2015, 54, 15823-15826.	13.8	74
101	TiO ₂ /Cu ₂ O Core/Ultrathin Shell Nanorods as Efficient and Stable Photocatalysts for Water Reduction. Angewandte Chemie - International Edition, 2015, 54, 15260-15265.	13.8	109
102	Entrapping an Ionic Liquid with Nanocarbon: The Formation of a Tailorable and Functional Surface. Angewandte Chemie - International Edition, 2015, 54, 231-235.	13.8	60
103	Nitrogenâ€Doped Annealed Nanodiamonds with Varied sp ² /sp ³ Ratio as Metalâ€Free Electrocatalyst for the Oxygen Reduction Reaction. ChemCatChem, 2015, 7, 2840-2845.	3.7	38
104	Active Sites and Mechanisms for Direct Oxidation of Benzene to Phenol over Carbon Catalysts. Angewandte Chemie - International Edition, 2015, 54, 4105-4109.	13.8	115
105	Efficient and highly selective boron-doped carbon materials-catalyzed reduction of nitroarenes. Chemical Communications, 2015, 51, 13086-13089.	4.1	84
106	Probing Defectâ€Induced Midgap States in MoS ₂ Through Graphene–MoS ₂ Heterostructures. Advanced Materials Interfaces, 2015, 2, 1500064.	3.7	17
107	Acid Properties of Nanocarbons and Their Application in Oxidative Dehydrogenation. ACS Catalysis, 2015, 5, 3600-3608.	11.2	63
108	New insights into the oxidative dehydrogenation of propane on borate-modified nanodiamond. Chemical Communications, 2015, 51, 9145-9148.	4.1	49

#	Article	IF	CITATIONS
109	Electron Microscopy of Solid Catalysts—Transforming from a Challenge to a Toolbox. Chemical Reviews, 2015, 115, 2818-2882.	47.7	200
110	Insight into the Enhanced Selectivity of Phosphate-Modified Annealed Nanodiamond for Oxidative Dehydrogenation Reactions. ACS Catalysis, 2015, 5, 2436-2444.	11.2	58
111	Reconstruction of Rh nanoparticles in methanol oxidation reaction. Catalysis Science and Technology, 2015, 5, 4116-4122.	4.1	9
112	Highly dispersed nanodiamonds supported on few-layer graphene as robust metal-free catalysts for ethylbenzene dehydrogenation reaction. Catalysis Science and Technology, 2015, 5, 4950-4953.	4.1	31
113	Boron-doped onion-like carbon with enriched substitutional boron: the relationship between electronic properties and catalytic performance. Journal of Materials Chemistry A, 2015, 3, 21805-21814.	10.3	81
114	Water splitting by carbon under visible light. National Science Review, 2015, 2, 138-139.	9.5	5
115	Efficient Metal-Free Catalytic Reaction Pathway for Selective Oxidation of Substituted Phenols. ACS Catalysis, 2015, 5, 5921-5926.	11.2	31
116	Size-controlled nitrogen-containing mesoporous carbon nanospheres by one-step aqueous self-assembly strategy. Journal of Materials Chemistry A, 2015, 3, 2305-2313.	10.3	149
117	Ionic Liquid Based Approaches to Carbon Materials Synthesis. European Journal of Inorganic Chemistry, 2015, 2015, 1137-1147.	2.0	63
118	Heterogenization of homogenous reaction system on carbon surface with ionic liquid as mediator. Green Chemistry, 2015, 17, 1107-1112.	9.0	24
119	Sustainable carbon materials. Chemical Society Reviews, 2015, 44, 250-290.	38.1	997
120	New challenges in gold catalysis: bimetallic systems. Catalysis Science and Technology, 2015, 5, 55-68.	4.1	107
121	Nanocarbons: Opening New Possibilities for Nano-engineered Novel Catalysts and Catalytic Electrodes. Catalysis Surveys From Asia, 2014, 18, 149-163.	2.6	30
122	Host–Guest Nanocomposites of Multiwalled Carbon Nanotubes and Ionic Liquids with Controllable Composition. ChemSusChem, 2014, 7, 1542-1546.	6.8	30
123	Evolution and Reactivity of Active Oxygen Species on sp ² @sp ³ Core–Shell Carbon for the Oxidative Dehydrogenation Reaction. ChemCatChem, 2014, 6, 2270-2275.	3.7	29
124	Efficient Hydrogenation of Alkyl Formate to Methanol over Nanocomposite Copper/Alumina Catalysts. ChemCatChem, 2014, 6, 3075-3079.	3.7	13
125	The Chemistry of Energy Conversion and Storage. ChemSusChem, 2014, 7, 1199-1200.	6.8	3
126	Study of the Role of Surface Oxygen Functional Groups on Carbon Nanotubes in the Selective Oxidation of Acrolein. ChemCatChem, 2014, 6, 1553-1557.	3.7	24

#	Article	IF	CITATIONS
127	Hybrid Nanocarbon as a Catalyst for Direct Dehydrogenation of Propane: Formation of an Active and Selective Core–Shell sp ² /sp ³ Nanocomposite Structure. Chemistry - A European Journal, 2014, 20, 6324-6331.	3.3	107
128	Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy and Environmental Science, 2014, 7, 576.	30.8	922
129	Nitrobenzene reduction catalyzed by carbon: does the reaction really belong to carbocatalysis?. Catalysis Science and Technology, 2014, 4, 4183-4187.	4.1	42
130	The first principles studies on the reaction pathway of the oxidative dehydrogenation of ethane on the undoped and doped carbon catalyst. Journal of Materials Chemistry A, 2014, 2, 5287.	10.3	45
131	Monodisperse embedded nanoparticles derived from an atomic metal-dispersed precursor of layered double hydroxide for architectured carbon nanotube formation. Journal of Materials Chemistry A, 2014, 2, 1686.	10.3	36
132	Creation of Br \tilde{A} ,nsted acid sites on Sn-based solid catalysts for the conversion of biomass. Journal of Materials Chemistry A, 2014, 2, 3725.	10.3	48
133	Substitutional Doping of Carbon Nanotubes with Heteroatoms and Their Chemical Applications. ChemSusChem, 2014, 7, 1240-1250.	6.8	67
134	Nitrogen-doped onion-like carbon: a novel and efficient metal-free catalyst for epoxidation reaction. Journal of Materials Chemistry A, 2014, 2, 12475-12483.	10.3	123
135	Insight into the mechanism of nanodiamond catalysed decomposition of methane molecules. Physical Chemistry Chemical Physics, 2014, 16, 4488-4491.	2.8	21
136	Interaction between Palladium Nanoparticles and Surfaceâ€Modified Carbon Nanotubes: Role of Surface Functionalities. ChemCatChem, 2014, 6, 2607-2612.	3.7	30
137	Silicon–nickel intermetallic compounds supported on silica as a highly efficient catalyst for CO methanation. Catalysis Science and Technology, 2014, 4, 53-61.	4.1	54
138	Fabrication of Nitrogen-Modified Annealed Nanodiamond with Improved Catalytic Activity. ACS Nano, 2014, 8, 7823-7833.	14.6	127
139	Metal-Free Carbon Catalysts for Oxidative Dehydrogenation Reactions. ACS Catalysis, 2014, 4, 3212-3218.	11.2	172
140	Heteropoly Acid/Carbon Nanotube Hybrid Materials as Efficient Solidâ€Acid Catalysts. ChemCatChem, 2014, 6, 2613-2620.	3.7	19
141	Preparation of Palladium Catalysts Supported on Carbon Nanotubes by an Electrostatic Adsorption Method. ChemCatChem, 2014, 6, 2600-2606.	3.7	33
142	A nanodiamond/CNT–SiC monolith as a novel metal free catalyst for ethylbenzene direct dehydrogenation to styrene. Chemical Communications, 2014, 50, 7810-7812.	4.1	82
143	Revealing the enhanced catalytic activity of nitrogen-doped carbon nanotubes for oxidative dehydrogenation of propane. Chemical Communications, 2013, 49, 8151.	4.1	149
144	First-Principles Studies of the Activation of Oxygen Molecule and Its Role in Partial Oxidation of Methane on Boron-Doped Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2013, 117, 17485-17492.	3.1	17

#	Article	IF	Citations
145	Research progress in metal-free carbon-based catalysts. Chinese Journal of Catalysis, 2013, 34, 508-523.	14.0	111
146	Sulfur and nitrogen co-doped carbon nanotubes for enhancing electrochemical oxygen reduction activity in acidic and alkaline media. Journal of Materials Chemistry A, 2013, 1, 14853.	10.3	203
147	Oxidative Dehydrogenation on Nanocarbon: Identification and Quantification of Active Sites by Chemical Titration. Angewandte Chemie - International Edition, 2013, 52, 14224-14228.	13.8	246
148	Vertically oriented polypyrrolenanowire arrays on Pd-plated Nafion \hat{A}^{\otimes} membrane and its application in direct methanolfuel cells. Journal of Materials Chemistry A, 2013, 1, 491-494.	10.3	53
149	Fabrication of porous Sn–C composites with high initial coulomb efficiency and good cyclic performance for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 9462.	10.3	62
150	Decorated resol derived mesoporous carbon: highly ordered microstructure, rich boron incorporation, and excellent electrochemical capacitance. RSC Advances, 2013, 3, 3578.	3.6	18
151	Carbonâ€Supported Gold Nanocatalysts: Shape Effect in the Selective Glycerol Oxidation. ChemCatChem, 2013, 5, 2717-2723.	3.7	54
152	Nitrogenâ€Doped sp ² â€Hybridized Carbon as a Superior Catalyst for Selective Oxidation. Angewandte Chemie - International Edition, 2013, 52, 2109-2113.	13.8	463
153	Controlled preparation and characterization of supported CuCr2O4 catalysts for hydrogenolysis of highly concentrated glycerol. Catalysis Science and Technology, 2013, 3, 1108.	4.1	44
154	Photohole-oxidation-assisted anchoring of ultra-small Ru clusters onto TiO2 with excellent catalytic activity and stability. Journal of Materials Chemistry A, 2013, 1, 2461.	10.3	54
155	A perspective on carbon materials for future energy application. Journal of Energy Chemistry, 2013, 22, 151-173.	12.9	187
156	Nanocarbons for the Development of Advanced Catalysts. Chemical Reviews, 2013, 113, 5782-5816.	47.7	1,163
157	One-Step Synthesis of Au–Pd Alloy Nanodendrites and Their Catalytic Activity. Journal of Physical Chemistry C, 2013, 117, 12526-12536.	3.1	119
158	Immobilizing Carbon Nanotubes on SiC Foam as a Monolith Catalyst for Oxidative Dehydrogenation Reactions. ChemCatChem, 2013, 5, 1713-1717.	3.7	25
159	Combined study of the ground and unoccupied electronic states of graphite by electron energy-loss spectroscopy. Journal of Applied Physics, 2013, 114, .	2.5	12
160	Fabrication, magnetic properties and self-assembly of hierarchical crystalline hexapod magnetites. RSC Advances, 2012, 2, 4329.	3.6	10
161	Thermolytic synthesis of graphitic boron carbon nitride from an ionic liquid precursor: mechanism, structure analysis and electronic properties. Journal of Materials Chemistry, 2012, 22, 23996.	6.7	69
162	Porous Montmorillonite Heterostructures Directed by a Single Alkyl Ammonium Template for Controlling the Product Distribution of Fischer–Tropsch Synthesis over Cobalt. Chemistry of Materials, 2012, 24, 972-974.	6.7	38

#	Article	IF	Citations
163	Dual-heteroatom-modified ordered mesoporous carbon: Hydrothermal functionalization, structure, and its electrochemical performance. Journal of Materials Chemistry, 2012, 22, 4963.	6.7	110
164	Gaâ€Pd/Ga ₂ O ₃ Catalysts: The Role of Gallia Polymorphs, Intermetallic Compounds, and Pretreatment Conditions on Selectivity and Stability in Different Reactions. ChemCatChem, 2012, 4, 1764-1775.	3.7	61
165	Mgâ€Al Mixed Oxides Supported Bimetallic Auâ€Pd Nanoparticles with Superior Catalytic Properties in Aerobic Oxidation of Benzyl Alcohol and Glycerol. Chinese Journal of Chemistry, 2012, 30, 2189-2197.	4.9	17
166	Crystalâ€Phase―and Morphologyâ€Controlled Synthesis of Fe ₂ O ₃ Nanomaterials. European Journal of Inorganic Chemistry, 2012, 2012, 2684-2690.	2.0	54
167	Chemically derived graphene–metal oxide hybrids as electrodes for electrochemical energy storage: pre-graphenization or post-graphenization?. Journal of Materials Chemistry, 2012, 22, 13947.	6.7	40
168	Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage. Journal of Materials Chemistry, 2012, 22, 14076.	6.7	280
169	Chemical Vapor Deposition of Pd(C3H5)(C5H5) to Synthesize Pd@MOF-5 Catalysts for Suzuki Coupling Reaction. Catalysis Letters, 2012, 142, 313-318.	2.6	75
170	Openâ€Ended, Nâ€Doped Carbon Nanotube–Graphene Hybrid Nanostructures as Highâ€Performance Catalyst Support. Advanced Functional Materials, 2011, 21, 999-1006.	14.9	358
171	Carbonâ€Catalyzed Oxidative Dehydrogenation of <i>n</i> à€Butane: Selective Site Formation during sp ³ â€toâ€sp ² Lattice Rearrangement. Angewandte Chemie - International Edition, 2011, 50, 3318-3322.	13.8	140
172	Inorganic Materials with Doubleâ€Helix Structures. Angewandte Chemie - International Edition, 2011, 50, 4747-4750.	13.8	35
173	Nonpreciousâ€Metal Catalysts for Lowâ€Cost Fuel Cells. Angewandte Chemie - International Edition, 2011, 50, 11570-11572.	13.8	184
174	Platinum‣ike Catalytic Behavior of Au ⁺ . ChemCatChem, 2010, 2, 1582-1586.	3.7	16
175	Tuning the Acid/Base Properties of Nanocarbons by Functionalization via Amination. Journal of the American Chemical Society, 2010, 132, 9616-9630.	13.7	590
176	Metalâ€Free Heterogeneous Catalysis for Sustainable Chemistry. ChemSusChem, 2010, 3, 169-180.	6.8	536
177	Nanostructured Carbon and Carbon Nanocomposites for Electrochemical Energy Storage Applications. ChemSusChem, 2010, 3, 136-168.	6.8	611
178	Surface Chemistry and Catalytic Reactivity of a Nanodiamond in the Steamâ€Free Dehydrogenation of Ethylbenzene. Angewandte Chemie - International Edition, 2010, 49, 8640-8644.	13.8	284
179	Nanostructured WCx/CNTs as highly efficient support of electrocatalysts with low Pt loading for oxygen reduction reaction. Energy and Environmental Science, 2010, 3, 1121.	30.8	106
180	Oxidation Stability of Multiwalled Carbon Nanotubes for Catalytic Applications. Chemistry of Materials, 2010, 22, 4462-4470.	6.7	94

#	ARTICLE	IF	CITATIONS
181	Defectâ€Mediated Functionalization of Carbon Nanotubes as a Route to Design Singleâ€Site Basic Heterogeneous Catalysts for Biomass Conversion. Angewandte Chemie - International Edition, 2009, 48, 6543-6546.	13.8	116
182	Heteroatoms Increase the Selectivity in Oxidative Dehydrogenation Reactions on Nanocarbons. Angewandte Chemie - International Edition, 2009, 48, 6913-6917.	13.8	299
183	Template preparation of nanoscale CexFe1â^'xO2 solid solutions and their catalytic properties for ethanol steam reforming. Journal of Materials Chemistry, 2009, 19, 1417.	6.7	74
184	Correlation Between the Microstructure and the Electrical Properties of ZrTiO ₄ Ceramics. Journal of the American Ceramic Society, 2008, 91, 178-186.	3.8	18
185	Bimetallic Gold/Palladium Catalysts: Correlation between Nanostructure and Synergistic Effects. Journal of Physical Chemistry C, 2008, 112, 8617-8622.	3.1	219
186	Surface-Modified Carbon Nanotubes Catalyze Oxidative Dehydrogenation of $\langle i \rangle n \langle i \rangle$ -Butane. Science, 2008, 322, 73-77.	12.6	761
187	Design and Preparation of Highly Active Ptâ^'Pd/C Catalyst for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2007, 111 , $5605-5617$.	3.1	166
188	Nanocarbon as Robust Catalyst: Mechanistic Insight into Carbonâ€Mediated Catalysis. Angewandte Chemie - International Edition, 2007, 46, 7319-7323.	13.8	226
189	Oxidative dehydrogenation of ethylbenzene to styrene over ultra-dispersed diamond and onion-like carbon. Carbon, 2007, 45, 2145-2151.	10.3	168
190	Mechanism of ZrTiO4 Synthesis by Mechanochemical Processing of TiO2 and ZrO2. Journal of the American Ceramic Society, 2006, 89, 060427083300025-???.	3.8	20
191	Hierarchically Structured Carbon: Synthesis of Carbon Nanofibers Nested inside or Immobilized onto Modified Activated Carbon. Angewandte Chemie - International Edition, 2005, 44, 5488-5492.	13.8	82
192	Supermolecular Self-Assembly of Graphene Sheets:  Formation of Tube-in-Tube Nanostructures. Nano Letters, 2004, 4, 2255-2259.	9.1	74