Dang Sheng Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8738052/publications.pdf Version: 2024-02-01

DANC SHENC SU

#	Article	IF	CITATIONS
1	Nanocarbons for the Development of Advanced Catalysts. Chemical Reviews, 2013, 113, 5782-5816.	23.0	1,163
2	Sustainable carbon materials. Chemical Society Reviews, 2015, 44, 250-290.	18.7	997
3	Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy and Environmental Science, 2014, 7, 576.	15.6	922
4	Surface-Modified Carbon Nanotubes Catalyze Oxidative Dehydrogenation of <i>n</i> -Butane. Science, 2008, 322, 73-77.	6.0	761
5	Nanostructured Carbon and Carbon Nanocomposites for Electrochemical Energy Storage Applications. ChemSusChem, 2010, 3, 136-168.	3.6	611
6	Tuning the Acid/Base Properties of Nanocarbons by Functionalization via Amination. Journal of the American Chemical Society, 2010, 132, 9616-9630.	6.6	590
7	High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nature Communications, 2017, 8, 15938.	5.8	569
8	Metalâ€Free Heterogeneous Catalysis for Sustainable Chemistry. ChemSusChem, 2010, 3, 169-180.	3.6	536
9	Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbonâ€Nanotubeâ€Based Electrocatalyst. Angewandte Chemie - International Edition, 2017, 56, 2699-2703.	7.2	516
10	Nitrogenâ€Doped sp ² â€Hybridized Carbon as a Superior Catalyst for Selective Oxidation. Angewandte Chemie - International Edition, 2013, 52, 2109-2113.	7.2	463
11	Classical strong metal–support interactions between gold nanoparticles and titanium dioxide. Science Advances, 2017, 3, e1700231.	4.7	361
12	Openâ€Ended, Nâ€Doped Carbon Nanotube–Graphene Hybrid Nanostructures as Highâ€Performance Catalyst Support. Advanced Functional Materials, 2011, 21, 999-1006.	7.8	358
13	Heteroatoms Increase the Selectivity in Oxidative Dehydrogenation Reactions on Nanocarbons. Angewandte Chemie - International Edition, 2009, 48, 6913-6917.	7.2	299
14	Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nature Catalysis, 2018, 1, 540-546.	16.1	297
15	Surface Chemistry and Catalytic Reactivity of a Nanodiamond in the Steamâ€Free Dehydrogenation of Ethylbenzene. Angewandte Chemie - International Edition, 2010, 49, 8640-8644.	7.2	284
16	Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage. Journal of Materials Chemistry, 2012, 22, 14076.	6.7	280
17	Wet-Chemistry Strong Metal–Support Interactions in Titania-Supported Au Catalysts. Journal of the American Chemical Society, 2019, 141, 2975-2983.	6.6	280
18	Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nature Communications, 2019, 10, 4500.	5.8	279

#	Article	IF	CITATIONS
19	Oxidative Dehydrogenation on Nanocarbon: Identification and Quantification of Active Sites by Chemical Titration. Angewandte Chemie - International Edition, 2013, 52, 14224-14228.	7.2	246
20	Nanocarbon as Robust Catalyst: Mechanistic Insight into Carbonâ€Mediated Catalysis. Angewandte Chemie - International Edition, 2007, 46, 7319-7323.	7.2	226
21	Bimetallic Gold/Palladium Catalysts: Correlation between Nanostructure and Synergistic Effects. Journal of Physical Chemistry C, 2008, 112, 8617-8622.	1.5	219
22	Carbocatalysis in Liquidâ€₽hase Reactions. Angewandte Chemie - International Edition, 2017, 56, 936-964.	7.2	209
23	Sulfur and nitrogen co-doped carbon nanotubes for enhancing electrochemical oxygen reduction activity in acidic and alkaline media. Journal of Materials Chemistry A, 2013, 1, 14853.	5.2	203
24	Electron Microscopy of Solid Catalysts—Transforming from a Challenge to a Toolbox. Chemical Reviews, 2015, 115, 2818-2882.	23.0	200
25	A perspective on carbon materials for future energy application. Journal of Energy Chemistry, 2013, 22, 151-173.	7.1	187
26	Nonpreciousâ€Metal Catalysts for Low ost Fuel Cells. Angewandte Chemie - International Edition, 2011, 50, 11570-11572.	7.2	184
27	Metal-Free Carbon Catalysts for Oxidative Dehydrogenation Reactions. ACS Catalysis, 2014, 4, 3212-3218.	5.5	172
28	Oxidative dehydrogenation of ethylbenzene to styrene over ultra-dispersed diamond and onion-like carbon. Carbon, 2007, 45, 2145-2151.	5.4	168
29	Design and Preparation of Highly Active Ptâ~'Pd/C Catalyst for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2007, 111, 5605-5617.	1.5	166
30	Enhanced Chemoselective Hydrogenation through Tuning the Interaction between Pt Nanoparticles and Carbon Supports: Insights from Identical Location Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy. ACS Catalysis, 2016, 6, 7844-7854.	5.5	161
31	Room-Temperature Electrocatalytic Synthesis of NH ₃ from H ₂ O and N ₂ in a Gas–Liquid–Solid Three-Phase Reactor. ACS Sustainable Chemistry and Engineering, 2017, 5, 7393-7400.	3.2	158
32	Revealing the enhanced catalytic activity of nitrogen-doped carbon nanotubes for oxidative dehydrogenation of propane. Chemical Communications, 2013, 49, 8151.	2.2	149
33	Size-controlled nitrogen-containing mesoporous carbon nanospheres by one-step aqueous self-assembly strategy. Journal of Materials Chemistry A, 2015, 3, 2305-2313.	5.2	149
34	Revealing the Origin of Activity in Nitrogenâ€Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide. ChemSusChem, 2016, 9, 1085-1089.	3.6	143
35	Carbonâ€Catalyzed Oxidative Dehydrogenation of <i>n</i> â€Butane: Selective Site Formation during sp ³ â€toâ€sp ² Lattice Rearrangement. Angewandte Chemie - International Edition, 2011, 50, 3318-3322.	7.2	140
36	Catalysis by hybrid sp ² /sp ³ nanodiamonds and their role in the design of advanced nanocarbon materials. Chemical Society Reviews, 2018, 47, 8438-8473.	18.7	130

#	Article	IF	CITATIONS
37	Fabrication of Nitrogen-Modified Annealed Nanodiamond with Improved Catalytic Activity. ACS Nano, 2014, 8, 7823-7833.	7.3	127
38	Secondary batteries with multivalent ions for energy storage. Scientific Reports, 2015, 5, 14120.	1.6	125
39	Lattice Strained Ni-Co alloy as a High-Performance Catalyst for Catalytic Dry Reforming of Methane. ACS Catalysis, 2019, 9, 2693-2700.	5.5	124
40	Nitrogen-doped onion-like carbon: a novel and efficient metal-free catalyst for epoxidation reaction. Journal of Materials Chemistry A, 2014, 2, 12475-12483.	5.2	123
41	One-Step Synthesis of Au–Pd Alloy Nanodendrites and Their Catalytic Activity. Journal of Physical Chemistry C, 2013, 117, 12526-12536.	1.5	119
42	Defectâ€Mediated Functionalization of Carbon Nanotubes as a Route to Design Singleâ€Site Basic Heterogeneous Catalysts for Biomass Conversion. Angewandte Chemie - International Edition, 2009, 48, 6543-6546.	7.2	116
43	Active Sites and Mechanisms for Direct Oxidation of Benzene to Phenol over Carbon Catalysts. Angewandte Chemie - International Edition, 2015, 54, 4105-4109.	7.2	115
44	Direct Insight into Ethane Oxidative Dehydrogenation over Boron Nitrides. ChemCatChem, 2017, 9, 3293-3297.	1.8	112
45	Research progress in metal-free carbon-based catalysts. Chinese Journal of Catalysis, 2013, 34, 508-523.	6.9	111
46	Dual-heteroatom-modified ordered mesoporous carbon: Hydrothermal functionalization, structure, and its electrochemical performance. Journal of Materials Chemistry, 2012, 22, 4963.	6.7	110
47	TiO ₂ /Cu ₂ O Core/Ultrathin Shell Nanorods as Efficient and Stable Photocatalysts for Water Reduction. Angewandte Chemie - International Edition, 2015, 54, 15260-15265.	7.2	109
48	Hybrid Nanocarbon as a Catalyst for Direct Dehydrogenation of Propane: Formation of an Active and Selective Core–Shell sp ² /sp ³ Nanocomposite Structure. Chemistry - A European Journal, 2014, 20, 6324-6331.	1.7	107
49	New challenges in gold catalysis: bimetallic systems. Catalysis Science and Technology, 2015, 5, 55-68.	2.1	107
50	Nanostructured WCx/CNTs as highly efficient support of electrocatalysts with low Pt loading for oxygen reduction reaction. Energy and Environmental Science, 2010, 3, 1121.	15.6	106
51	Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbonâ€Nanotubeâ€Based Electrocatalyst. Angewandte Chemie, 2017, 129, 2743-2747.	1.6	98
52	Oxidation Stability of Multiwalled Carbon Nanotubes for Catalytic Applications. Chemistry of Materials, 2010, 22, 4462-4470.	3.2	94
53	Self-Propagated Flaming Synthesis of Highly Active Layered CuO-Î ⁻ MnO ₂ Hybrid Composites for Catalytic Total Oxidation of Toluene Pollutant. ACS Applied Materials & Interfaces, 2017, 9, 21798-21808.	4.0	91
54	Research Progress on the Indirect Hydrogenation of Carbon Dioxide to Methanol. ChemSusChem, 2016, 9, 322-332.	3.6	90

#	Article	IF	CITATIONS
55	Remarkable effect of alkalis on the chemoselective hydrogenation of functionalized nitroarenes over high-loading Pt/FeO _x catalysts. Chemical Science, 2017, 8, 5126-5131.	3.7	90
56	Oxidative Dehydrogenation on Nanocarbon: Insights into the Reaction Mechanism and Kinetics via in Situ Experimental Methods. Accounts of Chemical Research, 2018, 51, 640-648.	7.6	87
5 7	Origin of the Robust Catalytic Performance of Nanodiamond–Graphene-Supported Pt Nanoparticles Used in the Propane Dehydrogenation Reaction. ACS Catalysis, 2017, 7, 3349-3355.	5.5	85
58	Revealing the Janus Character of the Coke Precursor in the Propane Direct Dehydrogenation on Pt Catalysts from a kMC Simulation. ACS Catalysis, 2018, 8, 4694-4704.	5.5	85
59	Efficient and highly selective boron-doped carbon materials-catalyzed reduction of nitroarenes. Chemical Communications, 2015, 51, 13086-13089.	2.2	84
60	Biomassâ€Derived Grapheneâ€like Carbon: Efficient Metalâ€Free Carbocatalysts for Epoxidation. Angewandte Chemie - International Edition, 2018, 57, 16898-16902.	7.2	83
61	Hierarchically Structured Carbon: Synthesis of Carbon Nanofibers Nested inside or Immobilized onto Modified Activated Carbon. Angewandte Chemie - International Edition, 2005, 44, 5488-5492.	7.2	82
62	A nanodiamond/CNT–SiC monolith as a novel metal free catalyst for ethylbenzene direct dehydrogenation to styrene. Chemical Communications, 2014, 50, 7810-7812.	2.2	82
63	Boron-doped onion-like carbon with enriched substitutional boron: the relationship between electronic properties and catalytic performance. Journal of Materials Chemistry A, 2015, 3, 21805-21814.	5.2	81
64	Direct Methylation of Amines with Carbon Dioxide and Molecular Hydrogen using Supported Gold Catalysts. ChemSusChem, 2015, 8, 3489-3496.	3.6	80
65	Identifying active sites of CoNC/CNT from pyrolysis of molecularly defined complexes for oxidative esterification and hydrogenation reactions. Catalysis Science and Technology, 2016, 6, 1007-1015.	2.1	80
66	Ti ₃ C ₂ T _{<i>x</i>} MXene Catalyzed Ethylbenzene Dehydrogenation: Active Sites and Mechanism Exploration from both Experimental and Theoretical Aspects. ACS Catalysis, 2018, 8, 10051-10057.	5.5	79
67	Oxidative Dehydrogenation on Nanocarbon: Intrinsic Catalytic Activity and Structure–Function Relationships. Angewandte Chemie - International Edition, 2015, 54, 13682-13685.	7.2	76
68	Chemical Vapor Deposition of Pd(C3H5)(C5H5) to Synthesize Pd@MOF-5 Catalysts for Suzuki Coupling Reaction. Catalysis Letters, 2012, 142, 313-318.	1.4	75
69	Supermolecular Self-Assembly of Graphene Sheets:  Formation of Tube-in-Tube Nanostructures. Nano Letters, 2004, 4, 2255-2259.	4.5	74
70	Template preparation of nanoscale CexFe1â^'xO2 solid solutions and their catalytic properties for ethanol steam reforming. Journal of Materials Chemistry, 2009, 19, 1417.	6.7	74
71	Stabilization of Palladium Nanoparticles on Nanodiamond–Graphene Core–Shell Supports for CO Oxidation. Angewandte Chemie - International Edition, 2015, 54, 15823-15826.	7.2	74
72	Thermolytic synthesis of graphitic boron carbon nitride from an ionic liquid precursor: mechanism, structure analysis and electronic properties. Journal of Materials Chemistry, 2012, 22, 23996.	6.7	69

#	Article	IF	CITATIONS
73	Probing the Metal–Support Interaction in Carbonâ€Supported Catalysts by using Electron Microscopy. ChemCatChem, 2015, 7, 3639-3645.	1.8	69
74	Facile Synthesis of Au Nanoparticles Embedded in an Ultrathin Hollow Graphene Nanoshell with Robust Catalytic Performance. Small, 2015, 11, 5059-5064.	5.2	69
75	Substitutional Doping of Carbon Nanotubes with Heteroatoms and Their Chemical Applications. ChemSusChem, 2014, 7, 1240-1250.	3.6	67
76	N-doped onion-like carbon as an efficient oxygen electrode for long-life Li–O ₂ battery. Journal of Materials Chemistry A, 2016, 4, 2128-2136.	5.2	64
77	A Heterogeneous Metalâ€Free Catalyst for Hydrogenation: Lewis Acid–Base Pairs Integrated into a Carbon Lattice. Angewandte Chemie - International Edition, 2018, 57, 13800-13804.	7.2	64
78	Acid Properties of Nanocarbons and Their Application in Oxidative Dehydrogenation. ACS Catalysis, 2015, 5, 3600-3608.	5.5	63
79	Ionic Liquid Based Approaches to Carbon Materials Synthesis. European Journal of Inorganic Chemistry, 2015, 2015, 1137-1147.	1.0	63
80	Fabrication of porous Sn–C composites with high initial coulomb efficiency and good cyclic performance for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 9462.	5.2	62
81	Synergistic Effect of Nitrogen in Cobalt Nitride and Nitrogenâ€Đoped Hollow Carbon Spheres for the Oxygen Reduction Reaction. ChemCatChem, 2015, 7, 1826-1832.	1.8	62
82	Gaâ€Pd/Ga ₂ O ₃ Catalysts: The Role of Gallia Polymorphs, Intermetallic Compounds, and Pretreatment Conditions on Selectivity and Stability in Different Reactions. ChemCatChem, 2012, 4, 1764-1775.	1.8	61
83	Entrapping an Ionic Liquid with Nanocarbon: The Formation of a Tailorable and Functional Surface. Angewandte Chemie - International Edition, 2015, 54, 231-235.	7.2	60
84	CO ₂ electoreduction reaction on heteroatom-doped carbon cathode materials. Journal of Materials Chemistry A, 2017, 5, 21596-21603.	5.2	60
85	Insight into the Enhanced Selectivity of Phosphate-Modified Annealed Nanodiamond for Oxidative Dehydrogenation Reactions. ACS Catalysis, 2015, 5, 2436-2444.	5.5	58
86	The tunable effect of nitrogen and boron dopants on a single walled carbon nanotube support on the catalytic properties of a single gold atom catalyst: a first principles study of CO oxidation. Journal of Materials Chemistry A, 2017, 5, 16653-16662.	5.2	58
87	Visualizing Formation of Intermetallic PdZn in a Palladium/Zinc Oxide Catalyst: Interfacial Fertilization by PdH _{<i>x</i>} . Angewandte Chemie - International Edition, 2019, 58, 4232-4237.	7.2	56
88	Molybdenum Carbide Modified Nanocarbon Catalysts for Alkane Dehydrogenation Reactions. ACS Catalysis, 2017, 7, 5820-5827.	5.5	55
89	Crystalâ€Phase―and Morphologyâ€Controlled Synthesis of Fe ₂ O ₃ Nanomaterials. European Journal of Inorganic Chemistry, 2012, 2012, 2684-2690.	1.0	54
90	Carbonâ€Supported Gold Nanocatalysts: Shape Effect in the Selective Glycerol Oxidation. ChemCatChem, 2013, 5, 2717-2723.	1.8	54

#	Article	IF	CITATIONS
91	Photohole-oxidation-assisted anchoring of ultra-small Ru clusters onto TiO2 with excellent catalytic activity and stability. Journal of Materials Chemistry A, 2013, 1, 2461.	5.2	54
92	Silicon–nickel intermetallic compounds supported on silica as a highly efficient catalyst for CO methanation. Catalysis Science and Technology, 2014, 4, 53-61.	2.1	54
93	Vertically oriented polypyrrolenanowire arrays on Pd-plated Nafion® membrane and its application in direct methanolfuel cells. Journal of Materials Chemistry A, 2013, 1, 491-494.	5.2	53
94	Hydrothermal Carbon Enriched with Oxygenated Groups from Biomass Glucose as an Efficient Carbocatalyst. Angewandte Chemie - International Edition, 2017, 56, 600-604.	7.2	51
95	Phosphorus-doped onion-like carbon for CO ₂ electrochemical reduction: the decisive role of the bonding configuration of phosphorus. Journal of Materials Chemistry A, 2018, 6, 19998-20004.	5.2	51
96	Hierarchical Nitrogenâ€Doped Graphene/Carbon Nanotube Composite Cathode for Lithium–Oxygen Batteries. ChemSusChem, 2015, 8, 3973-3976.	3.6	50
97	New insights into the oxidative dehydrogenation of propane on borate-modified nanodiamond. Chemical Communications, 2015, 51, 9145-9148.	2.2	49
98	Creation of BrÃ,nsted acid sites on Sn-based solid catalysts for the conversion of biomass. Journal of Materials Chemistry A, 2014, 2, 3725.	5.2	48
99	Bio-inspired Construction of Advanced Fuel Cell Cathode with Pt Anchored in Ordered Hybrid Polymer Matrix. Scientific Reports, 2015, 5, 16100.	1.6	48
100	Oxidative Dehydrogenation on Nanocarbon: Revealing the Catalytic Mechanism using Model Catalysts. ACS Catalysis, 2017, 7, 1424-1427.	5.5	48
101	Hierarchical porous carbon fibers/carbon nanofibers monolith from electrospinning/CVD processes as a high effective surface area support platform. Journal of Materials Chemistry A, 2017, 5, 2151-2162.	5.2	48
102	Electrocatalytic Water Oxidation at Quinone-on-Carbon: A Model System Study. Journal of the American Chemical Society, 2018, 140, 14717-14724.	6.6	48
103	Designing graphene as a new frustrated Lewis pair catalyst for hydrogen activation by co-doping. Physical Chemistry Chemical Physics, 2016, 18, 11120-11124.	1.3	46
104	Mesoporous boron-doped onion-like carbon as long-life oxygen electrode for sodium–oxygen batteries. Journal of Materials Chemistry A, 2016, 4, 6610-6619.	5.2	46
105	The first principles studies on the reaction pathway of the oxidative dehydrogenation of ethane on the undoped and doped carbon catalyst. Journal of Materials Chemistry A, 2014, 2, 5287.	5.2	45
106	Methanol conversion on borocarbonitride catalysts: Identification and quantification of active sites. Science Advances, 2020, 6, eaba5778.	4.7	45
107	Controlled preparation and characterization of supported CuCr2O4 catalysts for hydrogenolysis of highly concentrated glycerol. Catalysis Science and Technology, 2013, 3, 1108.	2.1	44
108	Selective and Stable Ethylbenzene Dehydrogenation to Styrene over Nanodiamonds under Oxygenâ€lean Conditions. ChemSusChem, 2016, 9, 662-666.	3.6	43

#	Article	IF	CITATIONS
109	N-Doped 3D Mesoporous Carbon/Carbon Nanotubes Monolithic Catalyst for H ₂ S Selective Oxidation. ACS Applied Nano Materials, 2019, 2, 3780-3792.	2.4	43
110	Nitrobenzene reduction catalyzed by carbon: does the reaction really belong to carbocatalysis?. Catalysis Science and Technology, 2014, 4, 4183-4187.	2.1	42
111	Insights into the surface chemistry and electronic properties of sp ² and sp ³ -hybridized nanocarbon materials for catalysis. Chemical Communications, 2017, 53, 4834-4837.	2.2	41
112	Chemically derived graphene–metal oxide hybrids as electrodes for electrochemical energy storage: pre-graphenization or post-graphenization?. Journal of Materials Chemistry, 2012, 22, 13947.	6.7	40
113	Porous Montmorillonite Heterostructures Directed by a Single Alkyl Ammonium Template for Controlling the Product Distribution of Fischer–Tropsch Synthesis over Cobalt. Chemistry of Materials, 2012, 24, 972-974.	3.2	38
114	Nitrogenâ€Ðoped Annealed Nanodiamonds with Varied sp ² /sp ³ Ratio as Metalâ€Free Electrocatalyst for the Oxygen Reduction Reaction. ChemCatChem, 2015, 7, 2840-2845.	1.8	38
115	Ru-Cluster-Modified Ni Surface Defects toward Selective Bond Breaking between C – O and C – C. Chemistry of Materials, 2016, 28, 4751-4761.	3.2	37
116	Carbokatalyse in Flüssigphasenreaktionen. Angewandte Chemie, 2017, 129, 956-985.	1.6	37
117	Monodisperse embedded nanoparticles derived from an atomic metal-dispersed precursor of layered double hydroxide for architectured carbon nanotube formation. Journal of Materials Chemistry A, 2014, 2, 1686.	5.2	36
118	A green and economical vapor-assisted ozone treatment process for surface functionalization of carbon nanotubes. Green Chemistry, 2017, 19, 1052-1062.	4.6	36
119	Probing the enhanced catalytic activity of carbon nanotube supported Ni-LaO _x hybrids for the CO ₂ reduction reaction. Nanoscale, 2018, 10, 14207-14219.	2.8	36
120	Inorganic Materials with Doubleâ€Helix Structures. Angewandte Chemie - International Edition, 2011, 50, 4747-4750.	7.2	35
121	Preparation of Palladium Catalysts Supported on Carbon Nanotubes by an Electrostatic Adsorption Method. ChemCatChem, 2014, 6, 2600-2606.	1.8	33
122	Highly dispersed nanodiamonds supported on few-layer graphene as robust metal-free catalysts for ethylbenzene dehydrogenation reaction. Catalysis Science and Technology, 2015, 5, 4950-4953.	2.1	31
123	Efficient Metal-Free Catalytic Reaction Pathway for Selective Oxidation of Substituted Phenols. ACS Catalysis, 2015, 5, 5921-5926.	5.5	31
124	Photoactive materials based on semiconducting nanocarbons – A challenge opening new possibilities for photocatalysis. Journal of Energy Chemistry, 2017, 26, 207-218.	7.1	31
125	Nanocarbons: Opening New Possibilities for Nano-engineered Novel Catalysts and Catalytic Electrodes. Catalysis Surveys From Asia, 2014, 18, 149-163.	1.0	30
126	Host–Guest Nanocomposites of Multiwalled Carbon Nanotubes and Ionic Liquids with Controllable Composition. ChemSusChem, 2014, 7, 1542-1546.	3.6	30

#	Article	IF	CITATIONS
127	Interaction between Palladium Nanoparticles and Surfaceâ€Modified Carbon Nanotubes: Role of Surface Functionalities. ChemCatChem, 2014, 6, 2607-2612.	1.8	30
128	Evolution and Reactivity of Active Oxygen Species on sp ² @sp ³ Core–Shell Carbon for the Oxidative Dehydrogenation Reaction. ChemCatChem, 2014, 6, 2270-2275.	1.8	29
129	The Effect of Different Phosphorus Chemical States on an Onionâ€like Carbon Surface for the Oxygen Reduction Reaction. ChemSusChem, 2015, 8, 2872-2876.	3.6	29
130	Revealing the Role of sp ² @sp ³ Structure of Nanodiamond in Direct Dehydrogenation: Insight from DFT study. ACS Catalysis, 2017, 7, 3779-3785.	5.5	29
131	Improving the Alkene Selectivity of Nanocarbon-Catalyzed Oxidative Dehydrogenation of <i>n</i> Butane by Refinement of Oxygen Species. ACS Catalysis, 2017, 7, 7305-7311.	5.5	28
132	Order of Activity of Nitrogen, Iron Oxide, and FeN _{<i>x</i>} Complexes towards Oxygen Reduction in Alkaline Medium. ChemSusChem, 2015, 8, 4016-4021.	3.6	26
133	Immobilizing Carbon Nanotubes on SiC Foam as a Monolith Catalyst for Oxidative Dehydrogenation Reactions. ChemCatChem, 2013, 5, 1713-1717.	1.8	25
134	Study of the Role of Surface Oxygen Functional Groups on Carbon Nanotubes in the Selective Oxidation of Acrolein. ChemCatChem, 2014, 6, 1553-1557.	1.8	24
135	Heterogenization of homogenous reaction system on carbon surface with ionic liquid as mediator. Green Chemistry, 2015, 17, 1107-1112.	4.6	24
136	Multiâ€Walled Carbon Nanotubes as a Catalyst for Gasâ€Phase Oxidation of Ethanol to Acetaldehyde. ChemSusChem, 2016, 9, 1820-1826.	3.6	24
137	In Situ Electrostatic Modulation of Path Selectivity for the Oxygen Reduction Reaction on Fe–N Doped Carbon Catalyst. Chemistry of Materials, 2017, 29, 4649-4653.	3.2	23
138	Hydrothermal Carbon Enriched with Oxygenated Groups from Biomass Glucose as an Efficient Carbocatalyst. Angewandte Chemie, 2017, 129, 615-619.	1.6	23
139	Hierarchically structured reactors containing nanocarbons for intensification of chemical reactions. Journal of Materials Chemistry A, 2017, 5, 22408-22441.	5.2	23
140	Detection of interlayer interaction in few-layer graphene. Physical Review B, 2015, 92, .	1.1	22
141	Insight into the mechanism of nanodiamond catalysed decomposition of methane molecules. Physical Chemistry Chemical Physics, 2014, 16, 4488-4491.	1.3	21
142	Mechanism of ZrTiO4 Synthesis by Mechanochemical Processing of TiO2 and ZrO2. Journal of the American Ceramic Society, 2006, 89, 060427083300025-???.	1.9	20
143	A fast transfer-free synthesis of high-quality monolayer graphene on insulating substrates by a simple rapid thermal treatment. Nanoscale, 2016, 8, 2594-2600.	2.8	20
144	The Coulombic Nature of Active Nitrogen Sites in N-Doped Nanodiamond Revealed In Situ by Ionic Surfactants. ACS Catalysis, 2017, 7, 3295-3300.	5.5	20

#	Article	IF	CITATIONS
145	Atomic-Scale Observation of Bimetallic Au-CuO <i>_{<i>x</i>}</i> Nanoparticles and Their Interfaces for Activation of CO Molecules. ACS Applied Materials & Interfaces, 2019, 11, 35468-35478.	4.0	20
146	Heteropoly Acid/Carbon Nanotube Hybrid Materials as Efficient Solidâ€Acid Catalysts. ChemCatChem, 2014, 6, 2613-2620.	1.8	19
147	A Facile and Efficient Method to Fabricate Highly Selective Nanocarbon Catalysts for Oxidative Dehydrogenation. ChemSusChem, 2017, 10, 353-358.	3.6	19
148	Dynamic Interplay between Copper Tetramers and Iron Oxide Boosting CO ₂ Conversion to Methanol and Hydrocarbons under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 14435-14442.	3.2	19
149	Correlation Between the Microstructure and the Electrical Properties of ZrTiO ₄ Ceramics. Journal of the American Ceramic Society, 2008, 91, 178-186.	1.9	18
150	Decorated resol derived mesoporous carbon: highly ordered microstructure, rich boron incorporation, and excellent electrochemical capacitance. RSC Advances, 2013, 3, 3578.	1.7	18
151	Pd–P nanoalloys supported on a porous carbon frame as an efficient catalyst for benzyl alcohol oxidation. Catalysis Science and Technology, 2018, 8, 2333-2339.	2.1	18
152	Mgâ€Al Mixed Oxides Supported Bimetallic Auâ€₽d Nanoparticles with Superior Catalytic Properties in Aerobic Oxidation of Benzyl Alcohol and Glycerol. Chinese Journal of Chemistry, 2012, 30, 2189-2197.	2.6	17
153	First-Principles Studies of the Activation of Oxygen Molecule and Its Role in Partial Oxidation of Methane on Boron-Doped Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2013, 117, 17485-17492.	1.5	17
154	Probing Defectâ€induced Midgap States in MoS ₂ Through Graphene–MoS ₂ Heterostructures. Advanced Materials Interfaces, 2015, 2, 1500064.	1.9	17
155	Palladium Supported on Nanodiamonds as an Efficient Catalyst for the Hydrogenating Deamination of Benzonitrile and Related Compounds. ChemCatChem, 2016, 8, 922-928.	1.8	17
156	Platinum‣ike Catalytic Behavior of Au ⁺ . ChemCatChem, 2010, 2, 1582-1586.	1.8	16
157	The influence of carbon surface chemistry on supported palladium nanoparticles in heterogeneous reactions. Journal of Colloid and Interface Science, 2016, 480, 175-183.	5.0	16
158	Nanodiamondâ€Coreâ€Reinforced, Grapheneâ€Shellâ€Immobilized Platinum Nanoparticles as a Highly Active Catalyst for the Lowâ€Temperature Dehydrogenation of <i>n</i> â€Butane. ChemCatChem, 2018, 10, 520-524.	1.8	15
159	Combined study of the ground and excited states in the transformation of nanodiamonds into carbon onions by electron energy-loss spectroscopy. Scientific Reports, 2019, 9, 3784.	1.6	15
160	Heteropoly Acid/Nitrogen Functionalized Onionâ€like Carbon Hybrid Catalyst for Ester Hydrolysis Reactions. Chemistry - an Asian Journal, 2016, 11, 491-497.	1.7	14
161	Efficient and Highly Selective Solventâ€Free Oxidation of Primary Alcohols to Aldehydes Using Bucky Nanodiamond. ChemSusChem, 2017, 10, 3497-3505.	3.6	14
162	An Efficient Metalâ€Free Catalyst for Oxidative Dehydrogenation Reaction: Activated Carbon Decorated with Few‣ayer Graphene. ChemSusChem, 2018, 11, 536-541.	3.6	14

#	Article	IF	CITATIONS
163	Efficient Hydrogenation of Alkyl Formate to Methanol over Nanocomposite Copper/Alumina Catalysts. ChemCatChem, 2014, 6, 3075-3079.	1.8	13
164	Graphitized nanocarbon-supported metal catalysts: synthesis, properties, and applications in heterogeneous catalysis. Science China Materials, 2017, 60, 1149-1167.	3.5	13
165	Combined study of the ground and unoccupied electronic states of graphite by electron energy-loss spectroscopy. Journal of Applied Physics, 2013, 114, .	1.1	12
166	Valorisation of Biomass Derived Furfural and Levulinic Acid by Highly Efficient Pd@ND Catalyst. Energy Technology, 2019, 7, 269-276.	1.8	12
167	Phosphorus oxide clusters stabilized by carbon nanotubes for selective isomerization and dehydrogenation of Î ² -isopentene. Catalysis Science and Technology, 2018, 8, 1522-1527.	2.1	11
168	Fabrication, magnetic properties and self-assembly of hierarchical crystalline hexapod magnetites. RSC Advances, 2012, 2, 4329.	1.7	10
169	The Unexpected Reactivity of the Carbon Sites on the Nanostructured Carbon Catalysts towards the Câ^'H Bond Activation from the Analysis of the Aromaticity. Chemistry - an Asian Journal, 2016, 11, 1668-1671.	1.7	10
170	Agl Nanoparticles Evenly Dispersed on 2D Porous Bi ₅ O ₇ I Sheets: Simple Synthesis and Excellent Photocatalytic Performance. ChemistrySelect, 2017, 2, 8535-8540.	0.7	10
171	Diffusion-Limited Formation of Nonequilibrium Intermetallic Nanophase for Selective Dehydrogenation. Nano Letters, 2019, 19, 4380-4383.	4.5	10
172	A Deoximation Method for Deprotection of Ketones and Aldhydes Using a Grapheneâ€Oxideâ€Based Coâ€catalysts System. Advanced Synthesis and Catalysis, 2019, 361, 3137-3145.	2.1	10
173	Reconstruction of Rh nanoparticles in methanol oxidation reaction. Catalysis Science and Technology, 2015, 5, 4116-4122.	2.1	9
174	Correlation between Microstructure Evolution of a Wellâ€Defined Cubic Palladium Catalyst and Selectivity during Acetylene Hydrogenation. ChemCatChem, 2017, 9, 3435-3439.	1.8	9
175	High performance of nitrogen-modified carbon nanotubes for selective oxidation of allyl alcohol. Catalysis Science and Technology, 2017, 7, 1279-1283.	2.1	9
176	Decisive Intermediates Responsible for the Carbonaceous Products of CO ₂ Electroâ€reduction on Nitrogenâ€Đoped sp ² Nanocarbon Catalysts in NaHCO ₃ Aqueous Electrolyte. ChemElectroChem, 2017, 4, 1274-1278.	1.7	9
177	Oxidative Dehydrogenation on Nanocarbon: Revealing the Reaction Mechanism via In Situ Experimental Strategies. ChemCatChem, 2019, 11, 397-400.	1.8	9
178	Conjugated polymers with defined chemical structure as model carbon catalysts for nitro reduction. RSC Advances, 2016, 6, 99570-99576.	1.7	7
179	A Heterogeneous Metalâ€Free Catalyst for Hydrogenation: Lewis Acid–Base Pairs Integrated into a Carbon Lattice. Angewandte Chemie, 2018, 130, 13996-14000.	1.6	6
180	Visualizing Formation of Intermetallic PdZn in a Palladium/Zinc Oxide Catalyst: Interfacial Fertilization by PdH x. Angewandte Chemie, 2019, 131, 4276-4281.	1.6	6

#	Article	IF	CITATIONS
181	Communication: Investigation of the electron momentum density distribution of nanodiamonds by electron energy-loss spectroscopy. Journal of Chemical Physics, 2015, 143, 211102.	1.2	5
182	Water splitting by carbon under visible light. National Science Review, 2015, 2, 138-139.	4.6	5
183	Determination of the acidic properties of carboxylated carbocatalysts in an acid-catalyzed ring-opening reaction using kinetic profiling. Nano Research, 2017, 10, 2954-2965.	5.8	5
184	Rational Design of Zirconiumâ€doped Titania Photocatalysts with Synergistic BrÃ,nsted Acidity and Photoactivity. ChemSusChem, 2016, 9, 2759-2764.	3.6	4
185	Graphenâ€Ã ¤ nlicher Kohlenstoff aus Biomasse: effiziente metallfreie Kohlenstoffkatalysatoren für Epoxidierungen. Angewandte Chemie, 2018, 130, 17141-17145.	1.6	4
186	The Chemistry of Energy Conversion and Storage. ChemSusChem, 2014, 7, 1199-1200.	3.6	3
187	Advanced Electron Microscopy and Spectroscopy for Catalysis. ChemCatChem, 2015, 7, 3598-3600.	1.8	3
188	Research Progress on the Indirect Hydrogenation of Carbon Dioxide to Methanol. ChemSusChem, 2016, 9, 315-315.	3.6	3
189	MoO _{<i>x</i>} Nanoparticle Catalysts for <scp>d</scp> -Glucose Epimerization and Their Electrical Immobilization in a Continuous Flow Reactor. ACS Applied Materials & Interfaces, 2019, 11, 44118-44123.	4.0	2
190	Investigation of Electron Momentum Density in Carbon Nanotubes Using Transmission Electron Microscopy. Microscopy and Microanalysis, 2019, 25, 1155-1159.	0.2	1
191	Innenrücktitelbild: A Heterogeneous Metalâ€Free Catalyst for Hydrogenation: Lewis Acid–Base Pairs Integrated into a Carbon Lattice (Angew. Chem. 42/2018). Angewandte Chemie, 2018, 130, 14131-14131.	1.6	0
192	Rücktitelbild: Visualizing Formation of Intermetallic PdZn in a Palladium/Zinc Oxide Catalyst: Interfacial Fertilization by PdH _{<i>x</i>} (Angew. Chem. 13/2019). Angewandte Chemie, 2019, 131, 4458-4458.	1.6	0