
Jiaxin Duan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8737848/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Charge Transport in Zirconium-Based Metal–Organic Frameworks. Accounts of Chemical Research, 2020, 53, 1187-1195.	15.6	100
2	Well-Defined Rhodium–Gallium Catalytic Sites in a Metal–Organic Framework: Promoter-Controlled Selectivity in Alkyne Semihydrogenation to <i>E</i> -Alkenes. Journal of the American Chemical Society, 2018, 140, 15309-15318.	13.7	88
3	Photocatalytic Biocidal Coatings Featuring Zr ₆ Ti ₄ -Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 12192-12201.	13.7	35
4	Photoinduced Charge Transfer with a Small Driving Force Facilitated by Exciplex-like Complex Formation in Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 15286-15297.	13.7	30
5	Isomer of linker for NU-1000 yields a new she -type, catalytic, and hierarchically porous, Zr-based metal–organic framework. Chemical Communications, 2021, 57, 3571-3574.	4.1	25
6	Assembly of dicobalt and cobalt–aluminum oxide clusters on metal–organic framework and nanocast silica supports. Faraday Discussions, 2017, 201, 287-302.	3.2	21
7	Application and Limitations of Nanocasting in Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 2782-2790.	4.0	21
8	Incorporation of free halide ions stabilizes metal–organic frameworks (MOFs) against pore collapse and renders large-pore Zr-MOFs functional for water harvesting. Journal of Materials Chemistry A, 2022, 10, 6442-6447.	10.3	19
9	Investigating the Process and Mechanism of Molecular Transport within a Representative Solvent-Filled Metal–Organic Framework. Langmuir, 2020, 36, 10853-10859.	3.5	18
10	Tuning the Conductivity of Hexa-Zirconium(IV) Metal–Organic Frameworks by Encapsulating Heterofullerenes. Chemistry of Materials, 2021, 33, 1182-1189.	6.7	17
11	Regioselective Functionalization of the Mesoporous Metal–Organic Framework, NU-1000, with Photo-Active Tris-(2,2′-bipyridine)ruthenium(II). ACS Omega, 2020, 5, 30299-30305.	3.5	17
12	Understanding Diffusional Charge Transport within a Pyrene-Based Hydrogen-Bonded Organic Framework. Langmuir, 2022, 38, 1533-1539.	3.5	17
13	Art of Architecture: Efficient Transport through Solvent-Filled Metal–Organic Frameworks Regulated by Topology. Chemistry of Materials, 2021, 33, 6832-6840.	6.7	12
14	Does the Mode of Metal–Organic Framework/Electrode Adhesion Determine Rates for Redox-Hopping-Based Charge Transport within Thin-Film Metal–Organic Frameworks?. Journal of Physical Chemistry C, 2022, 126, 4601-4611.	3.1	7
15	Redox-Hopping-Based Charge Transport Mediated by Ru(II)-Polypyridyl Species Immobilized in a Mesoporous Metal-Organic Framework. Frontiers in Chemical Engineering, 2022, 3, .	2.7	2
16	The Balance between Conductivity and Electro-/Photo-Catalytic Performance of Guest-Incorporated Metal-Organic Frameworks. ECS Meeting Abstracts, 2021, MA2021-01, 786-786.	0.0	0