Yasushi Enokido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8737719/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cystathionine βâ€synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB Journal, 2005, 19, 1854-1856.	0.2	209
2	Changes in mitochondrial membrane potential during oxidative stress-induced apoptosis in PC12 cells. , 1997, 50, 413-420.		183
3	Interaction between Mutant Ataxin-1 and PQBP-1 Affects Transcription and Cell Death. Neuron, 2002, 34, 701-713.	3.8	182
4	Brain-derived neurotrophic factor (bdnf) can prevent apoptosis of rat cerebellar granule neurons in culture. Developmental Brain Research, 1995, 85, 249-258.	2.1	179
5	Cytokine-Induced Nuclear Factor Kappa B Activation Promotes the Survival of Developing Neurons. Journal of Cell Biology, 2000, 148, 325-332.	2.3	141
6	Abnormal Lipid Metabolism in Cystathionine β-Synthase-deficient Mice, an Animal Model for Hyperhomocysteinemia. Journal of Biological Chemistry, 2004, 279, 52961-52969.	1.6	130
7	Involvement ofp53in DNA Strand Break-induced Apoptosis in Postmitotic CNS Neurons. European Journal of Neuroscience, 1996, 8, 1812-1821.	1.2	126
8	Cystathionine β-synthase is enriched in the brains of Down's patients. Biochemical and Biophysical Research Communications, 2005, 338, 1547-1550.	1.0	116
9	p53 involves cytosine arabinoside-induced apoptosis in cultured cerebellar granule neurons. Neuroscience Letters, 1996, 203, 1-4.	1.0	110
10	Survival factor-insensitive generation of reactive oxygen species induced by serum deprivation in neuronal cells. Brain Research, 1996, 733, 9-14.	1.1	110
11	Mutant huntingtin impairs Ku70-mediated DNA repair. Journal of Cell Biology, 2010, 189, 425-443.	2.3	110
12	Generation of free radicals during lipid hydroperoxide-triggered apoptosis in PC12h cells. Lipids and Lipid Metabolism, 1997, 1345, 35-42.	2.6	98
13	Generation of reactive oxygen species, release of l-glutamate and activation of caspases are required for oxygen-induced apoptosis of embryonic hippocampal neurons in culture. Brain Research, 1999, 824, 71-80.	1.1	97
14	Proteome analysis of soluble nuclear proteins reveals that HMGB1/2 suppress genotoxic stress in polyglutamine diseases. Nature Cell Biology, 2007, 9, 402-414.	4.6	97
15	Signaling pathways and survival effects of BDNF and NT-3 on cultured cerebellar granule cells. Developmental Brain Research, 1996, 97, 42-50.	2.1	91
16	Transcriptional repression induces a slowly progressive atypical neuronal death associated with changes of YAP isoforms and p73. Journal of Cell Biology, 2006, 172, 589-604.	2.3	84
17	MOCA Induces Membrane Spreading by Activating Rac1. Journal of Biological Chemistry, 2004, 279, 14331-14337.	1.6	79
18	Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain. Biochemical and Biophysical Research Communications, 2008, 376, 128-133.	1.0	78

Yasushi Enokido

#	Article	IF	CITATIONS
19	The Induction Levels of Heat Shock Protein 70 Differentiate the Vulnerabilities to Mutant Huntingtin among Neuronal Subtypes. Journal of Neuroscience, 2007, 27, 868-880.	1.7	77
20	Gram positive bacteria induce IL-6 and IL-8 production in human alveolar macrophages and epithelial cells. Cellular and Molecular Neurobiology, 1998, 18, 649-666.	1.7	65
21	Involvement of phosphatidylinositol-3 kinase in prevention of low K+-induced apoptosis of cerebellar granule neurons. Developmental Brain Research, 1997, 101, 197-206.	2.1	61
22	Basic fibroblast growth factor rescues CNS neurons from cell death caused by high oxygen atmosphere in culture. Brain Research, 1992, 599, 261-271.	1.1	59
23	Epidermal Growth Factor Prevents Oxygen-triggered Apoptosis and Induces Sustained Signalling in Cultured Rat Cerebral Cortical Neurons. European Journal of Neuroscience, 1995, 7, 2130-2138.	1.2	54
24	Production of Reactive Oxygen Species and Release of <scp>l</scp> â€Glutamate During Superoxide Anionâ€Induced Cell Death of Cerebellar Granule Neurons. Journal of Neurochemistry, 1998, 70, 316-324.	2.1	52
25	Regulation of Bax translocation through phosphorylation at Ser-70 of Bcl-2 by MAP kinase in NO-induced neuronal apoptosis. Molecular and Cellular Neurosciences, 2003, 24, 451-459.	1.0	50
26	Oxygen Toxicity Induces Apoptosis in Neuronal Cells. Cellular and Molecular Neurobiology, 1998, 18, 649-666.	1.7	43
27	Changes in c-Jun but not Bcl-2 family proteins in p53-dependent apoptosis of mouse cerebellar granule neurons induced by DNA damaging agent bleomycin. Brain Research, 1998, 794, 239-247.	1.1	43
28	High oxygen atmosphere for neuronal cell culture with nerve growth factor. II. Survival and growth of clonal rat pheochromocytoma PC12h cells. Brain Research, 1990, 536, 23-29.	1.1	36
29	Oxygen-induced apoptosis in PC12 cells with special reference to the role of Bcl-2. Brain Research, 1996, 733, 175-183.	1.1	36
30	In vitro Model of Hypoxia: Basic Fibroblast Growth Factor Can Rescue Cultured CNS Neurons from Oxygen-Deprived Cell Death. Journal of Cerebral Blood Flow and Metabolism, 1993, 13, 1029-1032.	2.4	35
31	Niemannâ€ <scp>P</scp> ick disease type <scp>C</scp> 1 predominantly involving the frontotemporal region, with cortical and brainstem <scp>L</scp> ewy bodies: An autopsy case. Neuropathology, 2014, 34, 49-57.	0.7	35
32	Omi / HtrA2 is relevant to the selective vulnerability of striatal neurons in Huntington's disease. European Journal of Neuroscience, 2008, 28, 30-40.	1.2	29
33	Upregulation and antiapoptotic role of endogenous Alzheimer amyloid precursor protein in dorsal root ganglion neurons. Experimental Cell Research, 2003, 286, 241-251.	1.2	22
34	Loss of the Xeroderma Pigmentosum Group A Gene (XPA) Enhances Apoptosis of Cultured Cerebellar Neurons Induced by UV but Not by Low-K+ Medium. Journal of Neurochemistry, 2002, 69, 246-251.	2.1	21
35	Hepatoma-derived growth factor, a new trophic factor for motor neurons, is up-regulated in the spinal cord of PQBP-1 transgenic mice before onset of degeneration. Journal of Neurochemistry, 2006, 99, 70-83.	2.1	21
36	Flow cytometric analysis of serum deprivation-induced apoptosis of PC12 cells, with special reference to role of bcl-2. Neuroscience Letters, 1995, 201, 119-122.	1.0	17

Yasushi Enokido

#	Article	IF	CITATIONS
37	The effect of rapamycin, NVP-BEZ235, aspirin, and metformin on PI3K/AKT/mTOR signaling pathway of <i>PIK3CA</i> -related overgrowth spectrum (PROS). Oncotarget, 2017, 8, 45470-45483.	0.8	17
38	High oxygen atmosphere for neuronal cell culture with nerve growth factor. I. Primary culture of basal forebrain cholinergic neurons from fetal and postnatal rats. Brain Research, 1990, 536, 16-22.	1.1	16
39	Involvement of c-Jun N-terminal kinase and caspase 3-like protease in DNA damage-induced, p53-mediated apoptosis of cultured mouse cerebellar granule neurons. Brain Research, 2001, 904, 270-278.	1.1	16
40	Developmental defects and aberrant accumulation of endogenous psychosine in oligodendrocytes in a murine model of Krabbe disease. Neurobiology of Disease, 2018, 120, 51-62.	2.1	13
41	Expression of cyclin A decreases during neuronal apoptosis in cultured rat cerebellar granule neurons. Developmental Brain Research, 1996, 97, 96-106.	2.1	11
42	Reduction in miRâ€219 expression underlies cellular pathogenesis of oligodendrocytes in a mouse model of Krabbe disease. Brain Pathology, 2021, 31, e12951.	2.1	5
43	Oxygen Toxicity Induces Apoptotic Neuronal Death in Cultured Rat Hippocampal Neurons. Advances in Behavioral Biology, 1995, , 319-326.	0.2	2
44	Mutant huntingtin impairs Ku70-mediated DNA repair. Journal of Experimental Medicine, 2010, 207, i16-i16.	4.2	0
45	Biochemical Characteristics of Oxygen-Induced and Low K+ Medium-Induced Apoptotic Neuronal Death. , 1996, , 435-437.		0