Anna Valujskikh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8737518/publications.pdf

Version: 2024-02-01

394421 289244 1,691 43 19 citations h-index papers

g-index 45 45 45 1693 docs citations times ranked citing authors all docs

40

#	Article	IF	CITATIONS
1	Macrophage-inducible C-type lectin activates B cells to promote T cell reconstitution in heart allograft recipients. American Journal of Transplantation, 2022, 22, 1779-1790.	4.7	5
2	C1q as a potential tolerogenic therapeutic in transplantation. American Journal of Transplantation, 2021, 21, 3519-3523.	4.7	6
3	Memory T Cells in Transplantation: Old Challenges Define New Directions. Transplantation, 2020, 104, 2024-2034.	1.0	11
4	Early T cell infiltration is modulated by programed cell death-1 protein and its ligand (PD-1/PD-L1) interactions in murine kidney transplants. Kidney International, 2020, 98, 897-905.	5.2	12
5	B cell–derived ILâ€1β and ILâ€6 drive T cell reconstitution following lymphoablation. American Journal of Transplantation, 2020, 20, 2740-2754.	4.7	7
6	Measuring Alloreactive B Cell Responses in Transplant Recipients. Current Transplantation Reports, 2019, 6, 99-105.	2.0	0
7	Aquaporin 4 inhibition alters chemokine receptor expression and T cell trafficking. Scientific Reports, 2019, 9, 7417.	3.3	18
8	Runaway powerhouse: Donor mitochondria promote rejection. American Journal of Transplantation, 2019, 19, 1875-1876.	4.7	2
9	Anti-donor MHC Class II Alloantibody Induces Glomerular Injury in Mouse Renal Allografts Subjected to Prolonged Cold Ischemia. Journal of the American Society of Nephrology: JASN, 2019, 30, 2413-2425.	6.1	9
10	In the absence of natural killer cell activation donor-specific antibody mediates chronic, but not acute, kidney allograft rejection. Kidney International, 2019, 95, 350-362.	5.2	20
11	Interleukin-27 promotes CD8+ T cell reconstitution following antibody-mediated lymphoablation. JCI Insight, 2019, 4, .	5.0	14
12	Measuring alloreactive B cell responses in transplant recipients. Current Transplantation Reports, 2019, 6, 99-105.	2.0	0
13	Aquaporin 4 blockade improves survival of murine heart allografts subjected to prolonged cold ischemia. American Journal of Transplantation, 2018, 18, 1238-1246.	4.7	20
14	Role of Memory T Cells in Allograft Rejection and Tolerance. Frontiers in Immunology, 2017, 8, 170.	4.8	79
15	CD4+ T lymphocytes produce adiponectin in response to transplants. JCI Insight, 2017, 2, .	5.0	11
16	Mechanisms of antibody-mediated acute and chronic rejection of kidney allografts. Current Opinion in Organ Transplantation, 2016, 21, 7-14.	1.6	37
17	Memory CD4 T Cells Induce Antibody-Mediated Rejection of Renal Allografts. Journal of the American Society of Nephrology: JASN, 2016, 27, 3299-3307.	6.1	51
18	Natural killer cells play a critical role in mediatingÂinflammation and graft failure during antibody-mediated rejection of kidney allografts. Kidney International, 2016, 89, 1293-1306.	5.2	56

#	Article	IF	CITATIONS
19	CD4 T Cell Help via B Cells Is Required for Lymphopenia-Induced CD8 T Cell Proliferation. Journal of Immunology, 2016, 196, 3180-3190.	0.8	19
20	IL-1 Receptor Signaling on Graft Parenchymal Cells Regulates Memory and De Novo Donor-Reactive CD8 T Cell Responses to Cardiac Allografts. Journal of Immunology, 2016, 196, 2827-2837.	0.8	6
21	IFN-Î ³ Production by Memory Helper T Cells Is Required for CD40-Independent Alloantibody Responses. Journal of Immunology, 2015, 194, 1347-1356.	0.8	19
22	Novel CD8 T Cell Alloreactivities in CCR5-Deficient Recipients of Class II MHC Disparate Kidney Grafts. Journal of Immunology, 2014, 193, 3816-3824.	0.8	4
23	LITERATURE WatchImplications for transplantation. American Journal of Transplantation, 2013, 13, 1117-1117.	4.7	2
24	LITERATURE WatchImplications for transplantation. American Journal of Transplantation, 2013, 13, 533-533.	4.7	2
25	CD40-Independent Help by Memory CD4 T Cells Induces Pathogenic Alloantibody But Does Not Lead to Long-Lasting Humoral Immunity. American Journal of Transplantation, 2013, 13, 2831-2841.	4.7	26
26	Memory T cells and their exhaustive differentiation in allograft tolerance and rejection. Current Opinion in Organ Transplantation, 2012, 17, 15-19.	1.6	18
27	Unexpected role for MHC II-peptide complexes in shaping CD8 T-cell expansion and differentiation in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12698-12703.	7.1	12
28	The Immune Response to Transplanted Organs. , 2011, , 1-22.		0
29	Antibodyâ€Mediated Rejection: Emergence of Animal Models to Answer Clinical Questions. American Journal of Transplantation, 2010, 10, 1135-1142.	4.7	29
30	Interleukin-17 Promotes Early Allograft Inflammation. American Journal of Pathology, 2010, 177, 1265-1273.	3.8	69
31	Targeting T-cell memory: where do we stand?. Current Opinion in Organ Transplantation, 2008, 13, 344-349.	1.6	19
32	Frontiers in Nephrology. Journal of the American Society of Nephrology: JASN, 2007, 18, 2252-2261.	6.1	79
33	Memory T Cells in Allograft Rejection. Advances in Experimental Medicine and Biology, 2007, 601, 247-256.	1.6	17
34	CD8 T Cells Specific for a Donor-Derived, Self-Restricted Transplant Antigen Are Nonpathogenic Bystanders after Vascularized Heart Transplantation in Mice. Journal of Immunology, 2006, 176, 2190-2196.	0.8	19
35	Lymphoid Sequestration of Alloreactive Memory CD4 T Cells Promotes Cardiac Allograft Survival. Journal of Immunology, 2006, 176, 770-777.	0.8	100
36	In Vivo Helper Functions of Alloreactive Memory CD4+ T Cells Remain Intact Despite Donor-Specific Transfusion and Anti-CD40 Ligand Therapy. Journal of Immunology, 2004, 172, 5456-5466.	0.8	122

3

#	Article	IF	CITATIONS
37	Emerging roles of endothelial cells in transplant rejection. Current Opinion in Immunology, 2003, 15, 493-498.	5.5	49
38	In remembrance of things past: memory T cells and transplant rejection. Immunological Reviews, 2003, 196, 65-74.	6.0	74
39	The Male Minor Transplantation Antigen Preferentially Activates Recipient CD4+ T Cells through the Indirect Presentation Pathway In Vivo. Journal of Immunology, 2003, 171, 6510-6518.	0.8	46
40	T Cells Primed by <i>Leishmania major</i> li>Infection Cross-React with Alloantigens and Alter the Course of Allograft Rejection. Journal of Immunology, 2002, 169, 3686-3693.	0.8	158
41	Primed Allospecific T Cells Prevent the Effects of Costimulatory Blockade on Prolonged Cardiac Allograft Survival in Mice. American Journal of Transplantation, 2002, 2, 501-509.	4.7	229
42	Cross-primed CD8+ T cells mediate graft rejection via a distinct effector pathway. Nature Immunology, 2002, 3, 844-851.	14.5	184
43	CHARACTERIZATION AND MANIPULATION OF T CELL IMMUNITY TO SKIN GRAFTS EXPRESSING A TRANSGENIC MINOR ANTIGEN1. Transplantation, 1999, 68, 1029-1036.	1.0	30