Janagam Lakshmidevi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8737512/publications.pdf

Version: 2024-02-01

933447 940533 18 271 10 16 citations g-index h-index papers 18 18 18 140 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly economic and waste valorization strategy for multicomponent and Knoevenagel reactions using water extract of tamarind seed ash. Environmental Science and Pollution Research, 2023, 30, 71420-71429.	5.3	5
2	Oxidative Iododeborylation Reaction of (Hetero)arylboronic Acids in Water Extract of Pomegranate Ash: A Novel and Sustainable Synthesis of Iodo(hetero)arenes. Waste and Biomass Valorization, 2022, 13, 2207-2216.	3.4	8
3	A rapid-room temperature synthesis of \hat{l} ±-cyanoacrylates, \hat{l} ±-cyanoacrylonitriles and 4H-pyrans using water extract of pomegranate ash as catalytic media. Sustainable Chemistry and Pharmacy, 2022, 25, 100610.	3.3	5
4	Cul in biorenewable basic medium: Three novel and low E-factor Suzuki-Miyaura cross-coupling reactions. Molecular Catalysis, 2022, 522, 112237.	2.0	8
5	A waste valorization strategy for the synthesis of phenols from (hetero)arylboronic acids using pomegranate peel ash extract. Green Chemistry Letters and Reviews, 2022, 15, 426-435.	4.7	5
6	Pd-catalyzed oxidative homocoupling of arylboronic acids in WEPA: A sustainable access to symmetrical biaryls under added base and ligand-free ambient conditions. Molecular Catalysis, 2021, 501, 111366.	2.0	14
7	Structure controlled Au@Pd NPs/rGO as robust heterogeneous catalyst for Suzuki coupling in biowasteâ€derived water extract of pomegranate ash. Applied Organometallic Chemistry, 2021, 35, e6188.	3.5	13
8	Pd(5%)-KIT-6, Pd(5%)-SBA-15 and Pd(5%)-SBA-16 catalysts in water extract of pomegranate ash: A case study in heterogenization of Suzuki-Miyaura reaction under external base and ligand free conditions. Sustainable Chemistry and Pharmacy, 2021, 19, 100371.	3.3	22
9	Water extract of pomegranate ash as waste-originated biorenewable catalyst for the novel synthesis of chiral tertâ€'butanesulfinyl aldimines in water. Molecular Catalysis, 2021, 511, 111719.	2.0	18
10	Porphyrin N-Pincer Pd(II)-Complexes in Water: A Base-Free and Nature-Inspired Protocol for the Oxidative Self-Coupling of Potassium Aryltrifluoroborates in Open-Air. Molecules, 2021, 26, 5390.	3.8	8
11	Water extract of pomegranate ash–I ₂ as sustainable system for external oxidant/metal/catalyst-free oxidative iodination of (hetero)arenes. Green Chemistry Letters and Reviews, 2021, 14, 700-712.	4.7	18
12	Palladiumâ€catalysed roomâ€temperature Suzuki–Miyaura coupling in water extract of pomegranate ash, a bioâ€derived sustainable and renewable medium. Applied Organometallic Chemistry, 2019, 33, e5126.	3. 5	23
13	Added catalyst-free, versatile and environment beneficial bromination of (hetero)aromatics using NBS in WEPA. SN Applied Sciences, 2019, 1, 1.	2.9	13
14	First sonochemical, simple and solvent-free synthesis of chiral <i>tert</i> -butanesulfinimines using silica supported <i>p</i> -toluenesulfonic acid. Synthetic Communications, 2019, 49, 56-64.	2.1	7
15	WEPA: a bio-derived medium for added base, π-acid and ligand free Ullmann coupling of aryl halides using Pd(OAc) ₂ . Chemical Communications, 2018, 54, 12333-12336.	4.1	52
16	HClO ₄ â <sio<sub>2â€Catalyzed Mechanochemical Protocol: An Effective, Economical and Ecoâ€friendly Preparation of <i>N</i>â€(<i>tert</i>â€butylsulfinyl)imines. ChemistrySelect, 2018, 3, 11236-11240.</sio<sub>	1.5	9
17	C(sp ²)â^'C(sp ²) Coupling in Water: Palladium(II) Complexes of Nâ€Pincer Tetradentate Porphyrins as Effective Catalysts. Asian Journal of Organic Chemistry, 2017, 6, 751-757.	2.7	29
18	Palladium(II)â∈Porphyrin Complexes as Efficient and Ecoâ∈Friendly Catalysts for Mizorokiâ∈Heck Coupling. ChemistrySelect, 2017, 2, 7394-7398.	1.5	14