Wei-Lie Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/873747/publications.pdf

Version: 2024-02-01

121 papers 2,409 citations

257450 24 h-index 265206 42 g-index

124 all docs

 $\begin{array}{c} 124 \\ \text{docs citations} \end{array}$

times ranked

124

1925 citing authors

#	Article	IF	CITATIONS
1	A pair of new oxindole alkaloids isolated from <i>Uncaria macrophylla</i> . Natural Product Research, 2023, 37, 1258-1264.	1.8	5
2	Machine Learning Assisted Discovery of Novel p38 \hat{l}_{\pm} Inhibitors from Natural Products. Combinatorial Chemistry and High Throughput Screening, 2023, 26, 1214-1223.	1.1	1
3	Synthesis compound XCR-7a ameliorates LPS-induced inflammatory response by inhibiting the phosphorylation of c-Fos. Biomedicine and Pharmacotherapy, 2022, 145, 112468.	5.6	4
4	C6-structural optimizations of 2-aryl-1H-pyrazole-S-DABOs: From anti-HIV to anti-DENV activity. Bioorganic Chemistry, 2022, 119, 105494.	4.1	10
5	Spiroarborin, an <i>ent</i> -Clerodane Homodimer from <i>Callicarpa arborea</i> as an Inhibitor of the Eleven-Nineteen Leukemia (ENL) Protein by Targeting the YEATS Domain. Journal of Natural Products, 2022, 85, 317-326.	3.0	10
6	Euphzycopias Aâ^'l, macrocyclic diterpenes with NLRP3 inflammasome inhibitory activity from Euphorbia helioscopia L Fìtoterapìâ, 2022, 157, 105139.	2.2	3
7	Design, synthesis and anti-breast cancer evaluation of biaryl pyridine analogues as potent RSK inhibitors. Bioorganic and Medicinal Chemistry Letters, 2022, 59, 128565.	2.2	7
8	Cathayanalactone G and other constituents from leaves and twigs of Callicarpa cathayana. Chinese Herbal Medicines, 2022, 14, 332-336.	3.0	2
9	Cu-Catalyzed Radical Addition and Oxidation Cascade: Unsymmetrical Trimerization of Indole to Access Isotriazatruxene. Organic Letters, 2022, 24, 1502-1506.	4.6	6
10	Aspulvins A–H, Aspulvinone Analogues with SARS-CoV-2 M ^{pro} Inhibitory and Anti-inflammatory Activities from an Endophytic <i>Cladosporium</i> sp Journal of Natural Products, 2022, 85, 878-887.	3.0	14
11	Ainslides Aâ^'F, Six Sesquiterpenoids Isolated from <i>Ainsliaea pertyoides</i> and Their NLRP3â€Inflammasome Inhibitory Activity. Chemistry and Biodiversity, 2022, 19, .	2.1	4
12	Indole derivative XCR-5a alleviates LPS-induced inflammation <i>inÂvitro</i> and <i>inÂvivo</i> Immunopharmacology and Immunotoxicology, 2022, 44, 157-167.	2.4	1
13	InflamNat: web-based database and predictor of anti-inflammatory natural products. Journal of Cheminformatics, 2022, 14, .	6.1	4
14	Machine learning approaches for elucidating the biological effects of natural products. Natural Product Reports, 2021, 38, 346-361.	10.3	56
15	Euphopias D–F from <i>Euphorbia</i> L.: quantum chemical calculation-based structure elucidation and their bioactivity of inhibiting NLRP3 inflammasome activation. Organic Chemistry Frontiers, 2021, 8, 3041-3046.	4.5	12
16	Novel clerodane-type diterpenoid Cintelactone A suppresses lipopolysaccharide -induced inflammation by promoting ubiquitination, proteasomal degradation of TRAF6. Pharmacological Research, 2021, 164, 105386.	7.1	8
17	Targeting ubiquitin conjugating enzyme UbcH5b by a triterpenoid PC3-15 from Schisandra plants sensitizes triple-negative breast cancer cells to lapatinib. Cancer Letters, 2021, 504, 125-136.	7.2	10
18	Synthesis of nigranoic acid and manwuweizic acid derivatives as HDAC inhibitors and anti-inflammatory agents. Bioorganic Chemistry, 2021, 109, 104728.	4.1	5

#	Article	IF	CITATIONS
19	Toonaones Aâ^'I, limonoids with NLRP3 inflammasome inhibitory activity from Toona ciliata M. Roem. Phytochemistry, 2021, 184, 112661.	2.9	10
20	Identification of a Novel TAR RNA-Binding Protein 2 Modulator with Potential Therapeutic Activity against Hepatocellular Carcinoma. Journal of Medicinal Chemistry, 2021, 64, 7404-7421.	6.4	4
21	Natural molecule Munronoid I attenuates LPS-induced acute lung injury by promoting the K48-linked ubiquitination and degradation of TAK1. Biomedicine and Pharmacotherapy, 2021, 138, 111543.	5.6	8
22	The bioactive limonoids from Toona ciliate as NLRP3 inflammasome inhibitors. Industrial Crops and Products, 2021, 167, 113533.	5.2	5
23	GC-MS Analysis and In Silico Approaches of Indigofera heterantha Root Oil Chemical Constituents. Compounds, 2021, 1, 116-124.	1.9	5
24	Leojaponin inhibits NLRP3 inflammasome activation through restoration of autophagy via upregulating RAPTOR phosphorylation. Journal of Ethnopharmacology, 2021, 278, 114322.	4.1	8
25	Dual C(sp3)–H Functionalization of Cyclic Ethers via Singlet Oxygen-Mediated Ring Opening and Ring Closing. Organic Letters, 2021, 23, 8267-8272.	4.6	6
26	Centrantheroside F, a new ionone glycoside from Centranthera grandiflora. Journal of Asian Natural Products Research, 2021, , 1-7.	1.4	1
27	Optimized Expression of Recombinant Human NIMA-Related Kinase 7 (NEK7) with A Higher Purity in Escherichia coli. Protein and Peptide Letters, 2021, 28, 1391-1397.	0.9	0
28	Anti-NLRP3 inflammasome abietane diterpenoids from Callicarpa bodinieri and their structure elucidation. Chinese Chemical Letters, 2020, 31, 427-430.	9.0	21
29	Synthesis and biological evaluation of a series of 2-(((5-akly/aryl-1H-pyrazol-3-yl)methyl)thio)-5-alkyl-6-(cyclohexylmethyl)-pyrimidin-4(3H)-ones as potential HIV-1 inhibitors. Acta Pharmaceutica Sinica B, 2020, 10, 512-528.	12.0	27
30	Elucidation of the Structure of Pseudorubriflordilactone B by Chemical Synthesis. Journal of the American Chemical Society, 2020, 142, 13701-13708.	13.7	18
31	Euphopias A–C: Three Rearranged Jatrophane Diterpenoids with Tricyclo[8.3.0.0 ^{2,7}]tridecane and Tetracyclo[11.3.0.0 ^{2,10} .0 ^{3,7}]hexadecane Cores from <i>Euphorbia helioscopia</i>	4.6	23
32	The natural compound Cirsitakaoside enhances antiviral innate responses against vesicular stomatitis virus in vitro and in vivo. International Immunopharmacology, 2020, 86, 106783.	3.8	8
33	Immunomodulatory and antitumour bioactive labdane diterpenoids from Leonurus japonicusâ€. Journal of Pharmacy and Pharmacology, 2020, 72, 1657-1665.	2.4	5
34	Rubellawus A–D, Four New Diterpenoids Isolated from <i>Callicarpa rubella</i> and Their Antiâ€NLRP3 Inflammasome Effects. Chemistry and Biodiversity, 2020, 17, e2000798.	2.1	6
35	SWL-1 Reverses Fluconazole Resistance in Candida albicans by Regulating the Glycolytic Pathway. Frontiers in Microbiology, 2020, 11, 572608.	3.5	6
36	Toonaolides A–X, limonoids from Toona ciliata: Isolation, structural elucidation, and bioactivity against NLRP3 inflammasome. Bioorganic Chemistry, 2020, 105, 104363.	4.1	22

#	Article	IF	CITATIONS
37	Structurally Diverse Labdane Diterpenoids from <i>Leonurus japonicus </i> and Their Anti-inflammatory Properties in LPS-Induced RAW264.7 Cells. Journal of Natural Products, 2020, 83, 2545-2558.	3.0	15
38	Diterpenoids from Callicarpa rubella and their in vitro anti-NLRP3 inflammasome activity. Fìtoterapìâ, 2020, 147, 104774.	2.2	7
39	Design, synthesis and anti-HIV evaluation of 5-alkyl-6-(benzo[d][1,3]dioxol-5-alkyl)-2-mercaptopyrimidin-4(3H)-ones as potent HIV-1 NNRTIs. Bioorganic Chemistry, 2020, 102, 104041.	4.1	5
40	Callicarpins, Two Classes of Rearranged <i>ent</i> Clerodane Diterpenoids from <i>Callicarpa</i> Plants Blocking NLRP3 Inflammasome-Induced Pyroptosis. Journal of Natural Products, 2020, 83, 2191-2199.	3.0	26
41	Synthesis and anti-inflammatory evaluation of new chalcone derivatives bearing bispiperazine linker as IL- $1\hat{l}^2$ inhibitors. Bioorganic Chemistry, 2020, 98, 103748.	4.1	22
42	Synthesis and Biological Evaluation of Heterocyclic Substituted Bis(indolyl)methanes. Current Organic Synthesis, 2020, 17, 144-150.	1.3	8
43	Luteolin-7-methylether from Leonurus japonicus inhibits estrogen biosynthesis in human ovarian granulosa cells by suppression of aromatase (CYP19). European Journal of Pharmacology, 2020, 879, 173154.	3.5	5
44	Density functional theory, molecular docking and bioassay studies on (S)-2-hydroxy-N-(2S,3S,4R,E)-1,3,4	3.2	3
45	Triterpenoids from <i>Ganoderma gibbosum</i> : A Class of Sensitizers of FLC-Resistant <i>Candida albicans</i> to Fluconazole. Journal of Natural Products, 2019, 82, 2067-2077.	3.0	18
46	Molecular networking-based strategy for the discovery of polyacetylated 18-norspirostanol saponins from Trillium tschonoskii maxim Phytochemistry, 2019, 168, 112125.	2.9	10
47	Discovery of betulinaldehyde as a natural RORγt agonist. Fìtoterapìâ, 2019, 137, 104200.	2.2	7
48	Clerodane diterpenoids with potential anti-inflammatory activity from the leaves and twigs of Callicarpa cathayana. Chinese Journal of Natural Medicines, 2019, 17, 953-962.	1.3	15
49	Chemical Space and Biological Target Network of Anti-Inflammatory Natural Products. Journal of Chemical Information and Modeling, 2019, 59, 66-73.	5.4	15
50	Schinortriterpenoids with Identical Configuration but Distinct ECD Spectra Generated by Nondegenerate Exciton Coupling. Organic Letters, 2018, 20, 1500-1504.	4.6	17
51	In Vitro Human Dihydroorotate Dehydrogenase Inhibitory, Anti-inflammatory and Cytotoxic Activities of Alkaloids from the Seeds of Nigella glandulifera. Planta Medica, 2018, 84, 1013-1021.	1.3	13
52	Isolation, identification and bioactivities of abietane diterpenoids from <i>Premna szemaoensis</i> RSC Advances, 2018, 8, 6425-6435.	3.6	11
53	SJP-L-5 inhibits HIV-1 polypurine tract primed plus-strand DNA elongation, indicating viral DNA synthesis initiation at multiple sites under drug pressure. Scientific Reports, 2018, 8, 2574.	3.3	5
54	Phytochemistry and pharmacology of the genus Leonurus: The herb to benefit the mothers and more. Phytochemistry, 2018, 147, 167-183.	2.9	56

#	Article	IF	CITATIONS
55	Cirsitakaoside isolated from Premna szemaoensis reduces LPS-induced inflammatory responses in vitro and in vivo. International Immunopharmacology, 2018, 59, 384-390.	3.8	11
56	Isolation, Characterization, and Structure–Activity Relationship Analysis of Abietane Diterpenoids from <i>Callicarpa bodinieri</i> as Spleen Tyrosine Kinase Inhibitors. Journal of Natural Products, 2018, 81, 998-1006.	3.0	20
57	Hispananeâ€Type Diterpenoid and Secoiridoid Glucosides from <i>Viburnum cylindricum</i> . Chemistry and Biodiversity, 2018, 15, e1700418.	2.1	6
58	Premnafulvol A: A Diterpenoid with a 6/5/7/3-Fused Tetracyclic Core and Its Biosynthetically Related Analogues from <i>Premna fulva</i> . Organic Letters, 2018, 20, 6314-6317.	4.6	18
59	Immune-inhibitive phenyl-C1 substituent aporphine alkaloids from Thalictrum cirrhosum. Fìtoterapìâ, 2018, 128, 247-252.	2.2	15
60	Highly oxygenated lanostane-type triterpenoids and their bioactivity from the fruiting body of Ganoderma gibbosum. Fìtoterapìâ, 2017, 119, 1-7.	2.2	26
61	Teuvincenone F Suppresses LPS-Induced Inflammation and NLRP3 Inflammasome Activation by Attenuating NEMO Ubiquitination. Frontiers in Pharmacology, 2017, 8, 565.	3.5	14
62	A new two-dimensional chromatographic method for separation of saponins from steamed Panax notoginseng. Journal of Pharmaceutical and Biomedical Analysis, 2016, 125, 355-359.	2.8	12
63	Plasiatine, an Unprecedented Indole–Phenylpropanoid Hybrid from Plantago asiatica as a Potent Activator of the Nonreceptor Protein Tyrosine Phosphatase Shp2. Scientific Reports, 2016, 6, 24945.	3.3	8
64	Two new phenolic compounds from the seeds of Machilus yunnanensis. Journal of Asian Natural Products Research, 2016, 18, 952-958.	1.4	3
65	LC–UV-Guided Isolation and Structure Determination of Lancolide E: A Nortriterpenoid with a Tetracyclo[5.4.0.0 ^{2,4} .0 ^{3,7}]undecane-Bridged System from a "Talented― <i>Schisandra</i> Plant. Organic Letters, 2016, 18, 100-103.	4.6	22
66	Extraction and Separation of Active Ingredients in Schisandra chinensis (Turcz.) Baill and the Study of their Antifungal Effects. PLoS ONE, 2016, 11, e0154731.	2.5	19
67	Momordin Ic, a new natural SENP1 inhibitor, inhibits prostate cancer cell proliferation. Oncotarget, 2016, 7, 58995-59005.	1.8	50
68	CDDO-Me reveals USP7 as a novel target in ovarian cancer cells. Oncotarget, 2016, 7, 77096-77109.	1.8	45
69	SJP-L-5, a novel small-molecule compound, inhibits HIV-1 infection by blocking viral DNA nuclear entry. BMC Microbiology, 2015, 15, 274.	3.3	8
70	Minor Prenylated Flavonoids from the Twigs of Macaranga adenantha and Their Cytotoxic Activity. Natural Products and Bioprospecting, 2015, 5, 105-109.	4.3	8
71	Identification of a dibenzocyclooctadiene lignan as a HIV-1 non-nucleoside reverse transcriptase inhibitor. Antiviral Chemistry and Chemotherapy, 2015, 24, 28-38.	0.6	9
72	Denticulatains A and B: unique stilbene–diterpene heterodimers from Macaranga denticulata. RSC Advances, 2015, 5, 13886-13890.	3.6	17

#	Article	IF	CITATIONS
73	Kadcoccinic Acids A–J, Triterpene Acids from <i>Kadsura coccinea</i> . Journal of Natural Products, 2015, 78, 2067-2073.	3.0	23
74	Cytotoxic prenylated flavonoids from Macaranga indica. Fìtoterapìâ, 2015, 103, 187-191.	2.2	18
75	Three minor new compounds from the aerial parts of Leonurus japonicus. Chinese Chemical Letters, 2015, 26, 1000-1003.	9.0	20
76	Three new prenylated flavonoids from Macaranga denticulata and their anticancer effects. Fìtoterapìâ, 2015, 103, 165-170.	2.2	21
77	Chemical constituents from <i>Euphorbia wallichii</i> and their biological activities. Journal of Asian Natural Products Research, 2015, 17, 946-951.	1.4	14
78	Triterpenoids from the Schisandraceae family: an update. Natural Product Reports, 2015, 32, 367-410.	10.3	150
79	New Lignans from the Leaves and Stems of <i>Schisandra chinensis</i> and Their Antiâ€HIVâ€1 Activities. Chinese Journal of Chemistry, 2014, 32, 734-740.	4.9	15
80	Effect of nigranoic acid on Ca2+ influx and its downstream signal mechanism in NGF-differentiated PC12 cells. Journal of Ethnopharmacology, 2014, 153, 725-731.	4.1	10
81	Structure and bioactivity of triterpenoids from the stems of Schisandra sphenanthera. Archives of Pharmacal Research, 2014, 37, 168-174.	6. 3	27
82	Three new diterpenoids from Leonurus japonicus. Chinese Chemical Letters, 2014, 25, 677-679.	9.0	17
83	Four new lignans from the leaves and stems of Schisandra propinqua var. sinensis. Natural Products and Bioprospecting, 2013, 3, 56-60.	4. 3	5
84	Five New Nortriterpenoids from the Stems of <i>Schisandra neglecta</i> . Helvetica Chimica Acta, 2013, 96, 1376-1385.	1.6	7
85	Bioactive Lignans from the Leaves and Stems of <i>Schisandra wilsoniana</i> Communications, 2013, 8, 1934578X1300800.	0.5	1
86	Kadcoccitones A and B, Two New 6/6/5/5-Fused Tetracyclic Triterpenoids from <i>Kadsura coccinea</i> Organic Letters, 2012, 14, 6362-6365.	4.6	40
87	Two new neolignans from Manglietia insignis. Natural Products and Bioprospecting, 2012, 2, 227-230.	4.3	5
88	Four new indole alkaloids from Plantago asiatica. Natural Products and Bioprospecting, 2012, 2, 249-254.	4.3	14
89	Synthesis and Biological Evaluation of Laxiflorin J Derivatives as Potential Antitumor Agents. Journal of Heterocyclic Chemistry, 2012, 49, 571-575.	2.6	3
90	Dibenzocyclooctadiene lignans from <i>Schisandra neglecta</i> and their anti-HIV-1 activities. Journal of Asian Natural Products Research, 2011, 13, 592-598.	1.4	12

#	Article	IF	CITATIONS
91	Three new nortriterpenoids from Schisandra wilsoniana and their anti-HIV-1 activities. Natural Products and Bioprospecting, $2011, 1, 33-36$.	4.3	8
92	Chemical Constituents from the Leaves and Stems of Schisandra lancifolia. Chemical and Pharmaceutical Bulletin, 2010, 58, 852-855.	1.3	13
93	Anti-HIV-1 activity of lignans from the fruits of Schisandra rubriflora. Archives of Pharmacal Research, 2010, 33, 697-701.	6.3	19
94	Four New Nortriterpenoids from <i>Schisandra lancifolia</i> . Helvetica Chimica Acta, 2010, 93, 1975-1982.	1.6	15
95	Dibenzocyclooctadiene Lignans from <i>Schisandra wilsoniana</i> and Their Anti-HIV-1 Activities. Journal of Natural Products, 2010, 73, 915-919.	3.0	42
96	Chemical Constituents from the Leaves and Stems of Schisandra rubriflora. Journal of Natural Products, 2010, 73, 221-225.	3.0	31
97	<i>ent</i> â€Abietanoids and <i>ent</i> â€Isopimaranoid Glycosides from <i>lsodon nervosus</i> . Helvetica Chimica Acta, 2009, 92, 362-369.	1.6	8
98	Bioactive Nortriterpenoids from <i>Schisandra grandiflora</i> . Journal of Natural Products, 2009, 72, 1678-1681.	3.0	34
99	Structure Elucidation and Theoretical Investigation of Key Steps in the Biogenetic Pathway of Schisanartane Nortriterpenoids by Using DFT Methods. Chemistry - A European Journal, 2008, 14, 11584-11592.	3.3	34
100	entâ€Kaurane Diterpenoids fromIsodon phyllostachys. Helvetica Chimica Acta, 2008, 91, 1130-1136.	1.6	9
101	Nortriterpenoids from <i>Schisandra wilsoniana</i> . Helvetica Chimica Acta, 2008, 91, 1871-1878.	1.6	24
102	Eight New Diterpenoids from the Roots of <i>Euphorbia nematocypha</i> . Helvetica Chimica Acta, 2008, 91, 2139-2147.	1.6	35
103	Nortriterpenoids and lignans from Schisandra sphenanthera. Phytochemistry, 2008, 69, 2862-2866.	2.9	49
104	Triterpenoids from the Schisandraceae family. Natural Product Reports, 2008, 25, 871.	10.3	227
105	Kadcoccilactones Aâ^J, Triterpenoids from <i>Kadsura coccinea</i> . Journal of Natural Products, 2008, 71, 1182-1188.	3.0	47
106	Triterpenoids from Schisandra rubriflora. Journal of Natural Products, 2007, 70, 1056-1059.	3.0	20
107	Three New Compounds fromKadsura longipedunculata. Helvetica Chimica Acta, 2007, 90, 723-729.	1.6	9
108	Four New Schisanartane-Type Nortriterpenoids from Schisandra propinqua var. propinqua. Helvetica Chimica Acta, 2007, 90, 1399-1405.	1.6	23

#	Article	IF	CITATIONS
109	Isolation and Structure Elucidation of Nortriterpenoids from <i>Schisandra rubriflora</i> . Helvetica Chimica Acta, 2007, 90, 1505-1513.	1.6	10
110	<i>ent</i> â€Kaurane Diterpenoids from <i>lsodon japonicus</i> . Helvetica Chimica Acta, 2007, 90, 2375-2379.	1.6	12
111	Two new coumarin glucosides from the roots ofangelica apaensis and their anti-platelet aggregation activity. Archives of Pharmacal Research, 2007, 30, 799-802.	6.3	8
112	Triterpenoids from Schisandra lancifolia with Anti-HIV-1 Activity. Journal of Natural Products, 2006, 69, 277-279.	3.0	51
113	Rubriflordilactones A and B, Two Novel Bisnortriterpenoids fromSchisandrarubrifloraand Their Biological Activities. Organic Letters, 2006, 8, 991-994.	4.6	106
114	Sphenadilactones A and B, Two Novel Nortriterpenoids from Schisandra sphenanthera. Organic Letters, 2006, 8, 1475-1478.	4.6	34
115	Nortriterpenoids from Schisandra lancifolia. Journal of Natural Products, 2006, 69, 650-653.	3.0	36
116	Three Novel Terpenoids from Schisandra pubescens var. pubinervis. Helvetica Chimica Acta, 2006, 89, 1169-1175.	1.6	43
117	Structure Elucidation of Two New Diterpenoids fromIsodon phyllostachys: Phyllostacins A and B. Helvetica Chimica Acta, 2006, 89, 1181-1186.	1.6	9
118	Structure Characterization and Possible Biogenesis of Three New Families of Nortriterpenoids: Schisanartane, Schiartane, and 18-Norschiartane. Chemistry - A European Journal, 2005, 11, 6763-6765.	3.3	9
119	Lancifodilactone F:  A Novel Nortriterpenoid Possessing a Unique Skeleton fromSchisandralancifoliaand Its Anti-HIV Activity. Organic Letters, 2005, 7, 1263-1266.	4.6	55
120	Lancifodilactone G:  A Unique Nortriterpenoid Isolated fromSchisandralancifoliaand Its Anti-HIV Activity. Organic Letters, 2005, 7, 2145-2148.	4.6	64
121	Munronoid I Ameliorates DSS-Induced Mouse Colitis by Inhibiting NLRP3 Inflammasome Activation and Pyroptosis Via Modulation of NLRP3. Frontiers in Immunology, 0, 13, .	4.8	8