
VÃjclav SlovÃjk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8737421/publications.pdf Version: 2024-02-01

VÃ:CLAV SLOVÃ:K

#	Article	IF	CITATIONS
1	Valorization of oak and casuarina fruit shells to reduce the rate of copper and methylene blue. International Journal of Environmental Science and Technology, 2022, 19, 7141-7150.	3.5	2
2	Revisiting the Effect of Pyrolysis Temperature and Type of Activation on the Performance of Carbon Electrodes in an Electrochemical Capacitor. Materials, 2022, 15, 2431.	2.9	6
3	Effect of amines on the peroxo-titanates and photoactivity of annealed TiO2. Arabian Journal of Chemistry, 2022, 15, 103808.	4.9	3
4	Kinetics of Resorcinol-Formaldehyde Condensation—Comparison of Common Experimental Techniques. Gels, 2022, 8, 8.	4.5	2
5	Liquefaction of Cellulose for Production of Advanced Porous Carbon Materials. Polymers, 2022, 14, 1621.	4.5	5
6	Porous carbon monoliths from ice-NaOH templated dissolved cellulose. Industrial Crops and Products, 2022, 183, 114961.	5.2	5
7	Disclosing the thermal reactions of aliphatic amines in the presence of TiO2 nanoparticles by multi-shot analytical pyrolysis. Journal of Analytical and Applied Pyrolysis, 2021, 159, 105284.	5.5	3
8	Thermoporometry of porous carbon: The effect of the carbon surface chemistry on the thickness of non-freezable pore water layer (delta layer). Microporous and Mesoporous Materials, 2021, 326, 111358.	4.4	12
9	Synthesis of Magnetic Adsorbents Based Carbon Highly Efficient and Stable for Use in the Removal of Pb(II) and Cd(II) in Aqueous Solution. Materials, 2021, 14, 6134.	2.9	2
10	The role of the oxygen functional groups in adsorption of copper (II) on carbon surface. Science of the Total Environment, 2020, 711, 135436.	8.0	33
11	Highly-efficient removal of Pb(<scp>ii</scp>), Cu(<scp>ii</scp>) and Cd(<scp>ii</scp>) from water by novel lithium, sodium and potassium titanate reusable microrods. RSC Advances, 2020, 10, 3694-3704.	3.6	21
12	Alternative determination of the skeletal density of solids using a manometric gas physisorption apparatus: A systematic and methodological study. Microporous and Mesoporous Materials, 2019, 290, 109641.	4.4	1
13	The influence of annealing temperature on properties of TiO based materials as adsorbents of radionuclides. Thermochimica Acta, 2019, 673, 34-39.	2.7	11
14	Oxygen surface groups analysis of carbonaceous samples pyrolysed at low temperature. Carbon, 2018, 134, 255-263.	10.3	48
15	Influence of catalyst amount on properties of resorcinol-formaldehyde xerogels. Thermochimica Acta, 2018, 660, 37-43.	2.7	9
16	Thermal decomposition study of nanostructured amorphous lithium, sodium and potassium metatitanates. Thermochimica Acta, 2018, 670, 148-154.	2.7	7
17	Facile synthesis of soft-templated carbon monoliths with hierarchical porosity for fast adsorption from liquid media. Microporous and Mesoporous Materials, 2018, 272, 155-165.	4.4	24
18	Kinetics of resorcinol–formaldehyde polycondensation by DSC. Journal of Thermal Analysis and Calorimetry, 2018, 134, 1215-1222.	3.6	4

VÃiclav SlovÃik

#	Article	IF	CITATIONS
19	Optimization of oxygen chemisorption on the carbon surface based on kinetic analysis of isothermal thermogravimetry. Thermochimica Acta, 2018, 666, 82-90.	2.7	4
20	Drying and Pyrolysis of Cellulose Nanofibers from Wood, Bacteria, and Algae for Char Application in Oil Absorption and Dye Adsorption. ACS Sustainable Chemistry and Engineering, 2017, 5, 2679-2692.	6.7	100
21	Determination of the Surface Oxidation Degree of the Carbonaceous Materials by Quantitative TG-MS Analysis. Analytical Chemistry, 2017, 89, 1710-1715.	6.5	21
22	Biosorption (removing) of Cd(II), Cu(II) and methylene blue using biochar produced by different pyrolysis conditions of beech and spruce sawdust. Wood Science and Technology, 2017, 51, 1321-1338.	3.2	17
23	Thermal decomposition of a peroxopolytitanic acid cryogel: TA/MS study. Thermochimica Acta, 2017, 647, 1-7.	2.7	9
24	Investigation of the thermal decomposition of a new titanium dioxide material. Journal of Thermal Analysis and Calorimetry, 2016, 125, 1071-1078.	3.6	19
25	Waste poly (vinyl chloride) pyrolysis with hydrogen chloride abatement by steelmaking dust. Chemical Papers, 2016, 70, .	2.2	3
26	The influence of pyrolytic temperature on sorption ability of carbon xerogel based on 3-aminophenol-formaldehyde polymer for Cu(II) ions and phenol. Journal of Analytical and Applied Pyrolysis, 2016, 121, 29-40.	5.5	16
27	Quantitative TG-MS analysis of evolved gases during the thermal decomposition of carbon containing solids. Thermochimica Acta, 2016, 632, 23-28.	2.7	22
28	Effect of pyrolysis temperature and thermal oxidation on the adsorption properties of carbon cryogels. Thermochimica Acta, 2015, 614, 45-51.	2.7	9
29	Optimisation of thermoporometry measurements to evaluate mesoporous organic and carbon xero-, cryo- and aerogels. Thermochimica Acta, 2015, 621, 81-89.	2.7	10
30	Reproducibility of preparation of cellulose-based cryogels characterised by TG–MS. Journal of Thermal Analysis and Calorimetry, 2015, 119, 359-367.	3.6	1
31	N-doped carbon xerogels prepared by ammonia assisted pyrolysis: Surface characterisation, thermal properties and adsorption ability for heavy metal ions. Journal of Analytical and Applied Pyrolysis, 2014, 109, 266-271.	5.5	26
32	Organic xerogels based on condensation of different m-substituted phenols with formaldehyde. Journal of Thermal Analysis and Calorimetry, 2014, 116, 663-669.	3.6	5
33	Monitoring of N-doped organic xerogels pyrolysis by TG–MS. Journal of Thermal Analysis and Calorimetry, 2013, 113, 209-217.	3.6	12
34	Urea and CaCl2 as inhibitors of coal low-temperature oxidation. Journal of Thermal Analysis and Calorimetry, 2012, 110, 363-367.	3.6	76
35	Pyrolysis of N-doped organic aerogels with relation to sorption properties. Journal of Thermal Analysis and Calorimetry, 2012, 108, 475-480.	3.6	6
36	Calorimetric investigation of chemical additives affecting oxidation of coal at low temperatures. Fuel Processing Technology, 2011, 92, 712-715.	7.2	60

VÃiclav SlovÃik

#	Article	IF	CITATIONS
37	Effect of experimental conditions on parameters derived from TG-DSC measurements of low-temperature oxidation of coal. Journal of Thermal Analysis and Calorimetry, 2010, 101, 641-646.	3.6	57
38	Wear performance and wear debris of semimetallic automotive brake materials. Wear, 2010, 268, 86-93.	3.1	78
39	Nickel(II) N-Benzyl-N-methyldithiocarbamato Complexes as Precursors for the Preparation of Graphite Oxidation Accelerators. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 1557-1564.	1.2	6
40	Novel octahedral nickel(II) dithiocarbamates with bi- or tetradentate N-donor ligands: X-ray structures of [Ni(Bzppzdtc)(phen)2]ClO4· CHCl3 and [Ni(Bz2dtc)2(cyclam)]. Polyhedron, 2008, 27, 411-419.	2.2	33
41	Development of oxidation heat of the coal left in the mined-out area of a longwall face: Modelling using the fluent software. Journal of Mining and Metallurgy, Section B: Metallurgy, 2008, 44, 73-81.	0.8	22
42	Ni(II) benzylbutyldithiocarbamates containing monodentate phosphines. Journal of Coordination Chemistry, 2007, 60, 485-494.	2.2	9
43	Ni(II) complexes of unsymmetrical phenyl and phenethyl dithiocarbamates and triphenylphosphine. Journal of Coordination Chemistry, 2006, 59, 437-444.	2.2	9
44	Symmetric Ni(II) dithiocarbamates with bidentate phosphines ligands. Journal of Coordination Chemistry, 2006, 59, 911-919.	2.2	14
45	Kinetic studies of graphon and coal-char reaction with NO and O2: direct non-linear regression from TG curves. Fuel Processing Technology, 2005, 86, 651-660.	7.2	24
46	Pitch pyrolysis kinetics from single TG curve. Journal of Analytical and Applied Pyrolysis, 2004, 72, 249-252.	5.5	19
47	The influence of selected oxides and carbonates on thermal oxidation of coke. Journal of Thermal Analysis and Calorimetry, 2003, 71, 875-881.	3.6	8
48	Application of direct nonlinear regression from single TG curve to compounds undergoing simple and complex thermal decompositions. International Journal of Chemical Kinetics, 2003, 35, 611-622.	1.6	3
49	Determination of kinetic parameters by direct non-linear regression from TG curves. Thermochimica Acta, 2001, 372, 175-182.	2.7	38
50	Effect of amines on (peroxo)titanates: characterization and thermal decomposition. Journal of Thermal Analysis and Calorimetry, 0, , 1.	3.6	4