Sukrit Silas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8737416/publications.pdf

Version: 2024-02-01

		1040056	1281871	
10	611	9	11	
papers	citations	h-index	g-index	
13	13	13	867	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Altered Mitochondria Functionality Defines a Metastatic Cell State in Lung Cancer and Creates an Exploitable Vulnerability. Cancer Research, 2021, 81, 567-579.	0.9	27
2	Doubling of the known set of RNA viruses by metagenomic analysis of an aquatic virome. Nature Microbiology, 2020, 5, 1262-1270.	13.3	156
3	Rapid deployment of SARS-CoV-2 testing: The CLIAHUB. PLoS Pathogens, 2020, 16, e1008966.	4.7	18
4	A Small RNA Isolation and Sequencing Protocol and Its Application to Assay CRISPR RNA Biogenesis in Bacteria. Bio-protocol, $2018,8,.$	0.4	5
5	A Reverse Transcriptase-Cas1 Fusion Protein Contains a Cas6 Domain Required for Both CRISPR RNA Biogenesis and RNA Spacer Acquisition. Molecular Cell, 2018, 72, 700-714.e8.	9.7	25
6	On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires. MBio, 2017, 8, .	4.1	52
7	Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems. ELife, 2017, 6, .	6.0	81
8	Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase–Cas1 fusion protein. Science, 2016, 351, aad4234.	12.6	170
9	Human IgE responses to different splice variants of Schistosoma mansoni tropomyosin: associations with immunity. International Journal for Parasitology, 2014, 44, 381-390.	3.1	13
10	Wild-type <i>Drosophila melanogaster</i> as an alternative model system for investigating the pathogenicity of <i>Candida albicans</i> DMM Disease Models and Mechanisms, 2011, 4, 504-514.	2.4	45