Yanjing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/873729/publications.pdf Version: 2024-02-01

YANUNG WANG

#	Article	IF	CITATIONS
1	MDF-SA-DDI: predicting drug–drug interaction events based on multi-source drug fusion, multi-source feature fusion and transformer self-attention mechanism. Briefings in Bioinformatics, 2022, 23, .	6.5	59
2	Discovering potent inhibitors against the Mpro of the SARS-CoV-2. A medicinal chemistry approach. Computers in Biology and Medicine, 2022, 143, 105235.	7.0	11
3	Evaluation and identification of essential therapeutic proteins and vaccinomics approach towards multi-epitopes vaccine designing against Legionella pneumophila for immune response instigation. Computers in Biology and Medicine, 2022, 143, 105291.	7.0	3
4	Blocking key mutated hotspot residues in the RBD of the omicron variant (B.1.1.529) with medicinal compounds to disrupt the RBD-hACE2 complex using molecular screening and simulation approaches. RSC Advances, 2022, 12, 7318-7327.	3.6	20
5	A transformer-based model to predict peptide–HLA class I binding and optimize mutated peptides for vaccine design. Nature Machine Intelligence, 2022, 4, 300-311.	16.0	55
6	Preharvest Hydrogen Peroxide Treatment Delays Leaf Senescence of Chinese Flowering Cabbage During Storage by Reducing Water Loss and Activating Antioxidant Defense System. Frontiers in Plant Science, 2022, 13, 856646.	3.6	3
7	Subtractive proteomics assisted therapeutic targets mining and designing ensemble vaccine against Candida auris for immune response induction. Computers in Biology and Medicine, 2022, 145, 105462.	7.0	10
8	A protein coupling and molecular simulation analysis of the clinical mutants of androgen receptor revealed a higher binding for Leupaxin, to increase the prostate cancer invasion and motility. Computers in Biology and Medicine, 2022, 146, 105537.	7.0	6
9	DTI-MLCD: predicting drug-target interactions using multi-label learning with community detection method. Briefings in Bioinformatics, 2021, 22, .	6.5	52
10	<i>In silico</i> and <i>in vitro</i> evaluation of kaempferol as a potential inhibitor of the <scp>SARSâ€CoV</scp> â€2 main protease (<scp>3CLpro</scp>). Phytotherapy Research, 2021, 35, 2841-2845.	5.8	80
11	An in-silico approach to identify the potential hot spots in SARS-CoV-2 spike RBD to block the interaction with ACE2 receptor. Journal of Biomolecular Structure and Dynamics, 2021, , 1-16.	3.5	14
12	MDA-GCNFTG: identifying miRNA-disease associations based on graph convolutional networks via graph sampling through the feature and topology graph. Briefings in Bioinformatics, 2021, 22, .	6.5	43
13	Towards an Ensemble Vaccine against the Pegivirus Using Computational Modelling Approaches and Its Validation through In Silico Cloning and Immune Simulation. Vaccines, 2021, 9, 818.	4.4	9
14	NeuroPpred-Fuse: an interpretable stacking model for prediction of neuropeptides by fusing sequence information and feature selection methods. Briefings in Bioinformatics, 2021, 22, .	6.5	23
15	MDA-CF: Predicting MiRNA-Disease associations based on a cascade forest model by fusing multi-source information. Computers in Biology and Medicine, 2021, 136, 104706.	7.0	21
16	SARS-CoV-2 new variants: Characteristic features and impact on the efficacy of different vaccines. Biomedicine and Pharmacotherapy, 2021, 143, 112176.	5.6	51
17	Bioinformatics analysis of the differences in the binding profile of the wild-type and mutants of the SARS-CoV-2 spike protein variants with the ACE2 receptor. Computers in Biology and Medicine, 2021, 138, 104936.	7.0	23
18	New strategy for identifying potential natural HIV-1 non-nucleoside reverse transcriptase inhibitors against drug-resistance: an in silico study. Journal of Biomolecular Structure and Dynamics, 2020, 38, 3327-3341.	3.5	13

YANJING WANG

#	Article	IF	CITATIONS
19	T4SE-XGB: Interpretable Sequence-Based Prediction of Type IV Secreted Effectors Using eXtreme Gradient Boosting Algorithm. Frontiers in Microbiology, 2020, 11, 580382.	3.5	23
20	STS-NLSP: A Network-Based Label Space Partition Method for Predicting the Specificity of Membrane Transporter Substrates Using a Hybrid Feature of Structural and Semantic Similarity. Frontiers in Bioengineering and Biotechnology, 2019, 7, 306.	4.1	17
21	ATC-NLSP: Prediction of the Classes of Anatomical Therapeutic Chemicals Using a Network-Based Label Space Partition Method. Frontiers in Pharmacology, 2019, 10, 971.	3.5	30
22	An Integrated Pan-Cancer Analysis and Structure-Based Virtual Screening of GPR15. International Journal of Molecular Sciences, 2019, 20, 6226.	4.1	15
23	Copper(<scp>ii</scp>)-mediated formation of oxazole-4-carbonitrile from acetophenone and coordinated cyanide anion via a radical coupling. RSC Advances, 2017, 7, 24643-24646.	3.6	5
24	Design, synthesis and structure-activity relationships of novel 4-phenoxyquinoline derivatives containing 1,2,4-triazolone moiety as c-Met kinase inhibitors. European Journal of Medicinal Chemistry, 2016, 123, 431-446.	5.5	38
25	Repositioning of experimentally validated anti-breast cancer peptides to target FAK-PAX complex to halt the breast cancer progression: a biomolecular simulation approach. Molecular Diversity, 0, , .	3.9	1