Mariarita Galbiati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8736825/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neurodegenerative Disease-Associated TDP-43 Fragments Are Extracellularly Secreted with CASA Complex Proteins. Cells, 2022, 11, 516.	1.8	11
2	Valosin Containing Protein (VCP): A Multistep Regulator of Autophagy. International Journal of Molecular Sciences, 2022, 23, 1939.	1.8	16
3	Pathogenic variants of Valosinâ€containing protein induce lysosomal damage and transcriptional activation of autophagy regulators in neuronal cells. Neuropathology and Applied Neurobiology, 2022, 48, e12818.	1.8	5
4	Retinoic Acid Downregulates HSPB8 Gene Expression in Human Breast Cancer Cells MCF-7. Frontiers in Oncology, 2021, 11, 652085.	1.3	3
5	Dysregulation of Muscle-Specific MicroRNAs as Common Pathogenic Feature Associated with Muscle Atrophy in ALS, SMA and SBMA: Evidence from Animal Models and Human Patients. International Journal of Molecular Sciences, 2021, 22, 5673.	1.8	14
6	The Role of Sex and Sex Hormones in Neurodegenerative Diseases. Endocrine Reviews, 2020, 41, 273-319.	8.9	118
7	A Crucial Role for the Protein Quality Control System in Motor Neuron Diseases. Frontiers in Aging Neuroscience, 2020, 12, 191.	1.7	16
8	Enhanced Clearance of Neurotoxic Misfolded Proteins by the Natural Compound Berberine and Its Derivatives. International Journal of Molecular Sciences, 2020, 21, 3443.	1.8	9
9	Multiple Roles of Transforming Growth Factor Beta in Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 2020, 21, 4291.	1.8	27
10	The Regulation of the Small Heat Shock Protein B8 in Misfolding Protein Diseases Causing Motoneuronal and Muscle Cell Death. Frontiers in Neuroscience, 2019, 13, 796.	1.4	23
11	Transforming growth factor beta 1 signaling is altered in the spinal cord and muscle of amyotrophic lateral sclerosis mice and patients. Neurobiology of Aging, 2019, 82, 48-59.	1.5	15
12	Autophagic and Proteasomal Mediated Removal of Mutant Androgen Receptor in Muscle Models of Spinal and Bulbar Muscular Atrophy. Frontiers in Endocrinology, 2019, 10, 569.	1.5	22
13	Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration. Autophagy, 2019, 15, 631-651.	4.3	256
14	The small heat shock protein B8 (HSPB8) efficiently removes aggregating species of dipeptides produced in C9ORF72-related neurodegenerative diseases. Cell Stress and Chaperones, 2018, 23, 1-12.	1.2	69
15	Tdp-25 Routing to Autophagy and Proteasome Ameliorates its Aggregation in Amyotrophic Lateral Sclerosis Target Cells. Scientific Reports, 2018, 8, 12390.	1.6	50
16	Inhibition of retrograde transport modulates misfolded protein accumulation and clearance in motoneuron diseases. Autophagy, 2017, 13, 1280-1303.	4.3	62
17	The small heat shock protein B8 (HSPB8) modulates proliferation and migration of breast cancer cells. Oncotarget, 2017, 8, 10400-10415.	0.8	42
18	The Role of the Heat Shock Protein B8 (HSPB8) in Motoneuron Diseases. Frontiers in Molecular Neuroscience, 2017, 10, 176.	1.4	54

MARIARITA GALBIATI

#	Article	IF	CITATIONS
19	Transcriptional induction of the heat shock protein B8 mediates the clearance of misfolded proteins responsible for motor neuron diseases. Scientific Reports, 2016, 6, 22827.	1.6	78
20	The Role of the Protein Quality Control System in SBMA. Journal of Molecular Neuroscience, 2016, 58, 348-364.	1.1	32
21	Aberrant Autophagic Response in The Muscle of A Knock-in Mouse Model of Spinal and Bulbar Muscular Atrophy. Scientific Reports, 2015, 5, 15174.	1.6	47
22	The role of dynein mediated transport in the clearance of misfolded proteins responsible for motoneuron diseases. SpringerPlus, 2015, 4, L24.	1.2	0
23	Synergic prodegradative activity of Bicalutamide and trehalose on the mutant androgen receptor responsible for spinal and bulbar muscular atrophy. Human Molecular Genetics, 2015, 24, 64-75.	1.4	42
24	Neuritin 1 promotes neuronal migration. Brain Structure and Function, 2014, 219, 105-118.	1.2	34
25	ALS-related misfolded protein management in motor neurons and muscle cells. Neurochemistry International, 2014, 79, 70-78.	1.9	27
26	Altered expression of 3-betahydroxysterol delta-24-reductase/selective Alzheimer's disease indicator-1 gene in Huntington's disease models. Journal of Endocrinological Investigation, 2014, 37, 729-737.	1.8	6
27	Androgens affect muscle, motor neuron, and survival in a mouse model of SOD1-related amyotrophic lateral sclerosis. Neurobiology of Aging, 2014, 35, 1929-1938.	1.5	31
28	Motoneuronal and muscle-selective removal of ALS-related misfolded proteins. Biochemical Society Transactions, 2014, 42, 605-605.	1.6	0
29	Motoneuronal and muscle-selective removal of ALS-related misfolded proteins. Biochemical Society Transactions, 2013, 41, 1598-1604.	1.6	31
30	Differential autophagy power in the spinal cord and muscle of transgenic ALS mice. Frontiers in Cellular Neuroscience, 2013, 7, 234.	1.8	53
31	The anabolic/androgenic steroid nandrolone exacerbates gene expression modifications induced by mutant SOD1 in muscles of mice models of amyotrophic lateral sclerosis. Pharmacological Research, 2012, 65, 221-230.	3.1	29
32	CAG repeat length in androgen receptor gene is not associated with amyotrophic lateral sclerosis. European Journal of Neurology, 2012, 19, 1373-1375.	1.7	9
33	Muscle cells and motoneurons differentially remove mutant SOD1 causing familial amyotrophic lateral sclerosis. Journal of Neurochemistry, 2011, 118, 266-280.	2.1	55
34	Proteasomal and autophagic degradative activities in spinal and bulbar muscular atrophy. Neurobiology of Disease, 2010, 40, 361-369.	2.1	42
35	The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). Human Molecular Genetics, 2010, 19, 3440-3456.	1.4	303
36	Gangliosides influence EGFR/ErbB2 heterodimer stability but they do not modify EGF-dependent ErbB2 phosphorylation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 617-624.	1.2	6

MARIARITA GALBIATI

#	Article	IF	CITATIONS
37	Androgen regulation of axon growth and neurite extension in motoneurons. Hormones and Behavior, 2008, 53, 716-728.	1.0	51
38	Neuritin (cpg15) enhances the differentiating effect of NGF on neuronal PC12 cells. Journal of Neuroscience Research, 2007, 85, 2702-2713.	1.3	33
39	Smad Proteins are Targets of Transforming Growth Factor beta1 in Immortalised Gonadotrophin-Releasing Hormone Releasing Neurones. Journal of Neuroendocrinology, 2005, 17, 753-760.	1.2	8
40	Effects of progesterone derivatives, dihydroprogesterone and tetrahydroprogesterone, on the subependymal layer of the adult rat. Journal of Neurobiology, 2004, 58, 493-502.	3.7	25
41	Steroid Hormones and Growth Factors Act in an Integrated Manner at the Levels of Hypothalamic Astrocytes. Annals of the New York Academy of Sciences, 2003, 1007, 162-168.	1.8	35
42	Neurogenesis in the Subependymal Layer of the Adult Rat. Annals of the New York Academy of Sciences, 2003, 1007, 335-339.	1.8	19
43	Role of glial cells, growth factors and steroid hormones in the control of LHRH-secreting neurons. Domestic Animal Endocrinology, 2003, 25, 101-108.	0.8	5
44	Non-neuronal cells in the nervous system: sources and targets of neuroactive steroids. Advances in Molecular and Cell Biology, 2003, 31, 535-559.	0.1	5
45	Growth factors and steroid hormones: a complex interplay in the hypothalamic control of reproductive functions. Progress in Neurobiology, 2002, 67, 421-449.	2.8	34
46	Oestrogens, Via Transforming Growth Factor α, Modulate Basic Fibroblast Growth Factor Synthesis in Hypothalamic Astrocytes: In Vitro observations. Journal of Neuroendocrinology, 2002, 14, 829-835.	1.2	32
47	Steroid Effects on the Gene Expression of Peripheral Myelin Proteins. Hormones and Behavior, 2001, 40, 210-214.	1.0	18
48	Interactions between growth factors and steroids in the control of LHRH-secreting neurons. Brain Research Reviews, 2001, 37, 223-234.	9.1	24
49	Neuroactive steroids and peripheral myelin proteins. Brain Research Reviews, 2001, 37, 360-371.	9.1	104
50	Hypothalamic Transforming Growth Factor β1 and Basic Fibroblast Growth Factor mRNA Expression is Modified During the Rat Oestrous Cycle. Journal of Neuroendocrinology, 2001, 13, 483-489.	1.2	30
51	Formation and effects of neuroactive steroids in the central and peripheral nervous system. International Review of Neurobiology, 2001, 46, 145-176.	0.9	61
52	The action of steroid hormones on peripheral myelin proteins: a possible new tool for the rebuilding of myelin?. Journal of Neurocytology, 2000, 29, 327-339.	1.6	62
53	Transforming growth factor β2 is able to modify mRNA levels and release of luteinizing hormone-releasing hormone in a immortalized hypothalamic cell line (GT1-1). Neuroscience Letters, 1999, 270, 165-168.	1.0	25
54	Astrocyte-Neuron Interactions in Vitro: Role of Growth Factors and Steroids on LHRH Dynamics. Brain Research Bulletin, 1997, 44, 465-469.	1.4	24

#	Article	IF	CITATIONS
55	The Anterior Pituitary Gland as a Possible Site of Action of Kainic Acid. Experimental Biology and Medicine, 1994, 206, 431-437.	1.1	16
56	Excitatory amino acids as modulators of gonadotropin secretion. Amino Acids, 1994, 6, 47-56.	1.2	1