Huihua Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8736535/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydrate Polymers, 2018, 185, 1-11.	10.2	382
2	Utilization of pineapple peel for production of nanocellulose and film application. Cellulose, 2018, 25, 1743-1756.	4.9	151
3	Enhanced Swelling and Responsive Properties of Pineapple Peel Carboxymethyl Cellulose- <i>g</i> -poly(acrylic acid- <i>co</i> -acrylamide) Superabsorbent Hydrogel by the Introduction of Carclazyte. Journal of Agricultural and Food Chemistry, 2017, 65, 565-574.	5.2	138
4	Review on Magnetic Natural Polymer Constructed Hydrogels as Vehicles for Drug Delivery. Biomacromolecules, 2020, 21, 2574-2594.	5.4	106
5	Green pH/magnetic sensitive hydrogels based on pineapple peel cellulose and polyvinyl alcohol: synthesis, characterization and naringin prolonged release. Carbohydrate Polymers, 2019, 209, 51-61.	10.2	98
6	Modified pineapple peel cellulose hydrogels embedded with sepia ink for effective removal of methylene blue. Carbohydrate Polymers, 2016, 148, 1-10.	10.2	95
7	Pineapple peel carboxymethyl cellulose/polyvinyl alcohol/mesoporous silica SBA-15 hydrogel composites for papain immobilization. Carbohydrate Polymers, 2017, 169, 504-514.	10.2	93
8	Synthesis and response of pineapple peel carboxymethyl cellulose-g-poly (acrylic) Tj ETQq0 0 0 rgBT /Overlock 10	Tf 50 462 10.2	Td (acid-co

9	and its immunomodulatory activities. Food and Function, 2018, 9, 294-306.	4.6	83
10	Immune-enhancing activities of chondroitin sulfate in murine macrophage RAW 264.7 cells. Carbohydrate Polymers, 2018, 198, 611-619.	10.2	71
11	Direct fabrication of hierarchically processed pineapple peel hydrogels for efficient Congo red adsorption. Carbohydrate Polymers, 2020, 230, 115599.	10.2	70
12	Green and facile fabrication of pineapple peel cellulose/magnetic diatomite hydrogels in ionic liquid for methylene blue adsorption. Cellulose, 2019, 26, 3825-3844.	4.9	69
13	Structural characterization of a novel polysaccharide fraction from Hericium erinaceus and its signaling pathways involved in macrophage immunomodulatory activity. Journal of Functional Foods, 2017, 37, 574-585.	3.4	63
14	Enhanced swelling and multiple-responsive properties of gelatin/sodium alginate hydrogels by the addition of carboxymethyl cellulose isolated from pineapple peel. Cellulose, 2018, 25, 593-606.	4.9	61
15	Inhibitory activity and conformation changes of soybean trypsin inhibitors induced by ultrasound. Ultrasonics Sonochemistry, 2008, 15, 724-730.	8.2	60
16	Magnetic chitin hydrogels prepared from Hericium erinaceus residues with tunable characteristics: A novel biosorbent for Cu2+ removal. Carbohydrate Polymers, 2019, 220, 191-201.	10.2	57
17	Assessments of antioxidant effect of black tea extract and its rationals by erythrocyte haemolysis assay, plasma oxidation assay and cellular antioxidant activity (CAA) assay. Journal of Functional Foods, 2015, 18, 1095-1105.	3.4	56
18	Synthesis, characterization and properties of pineapple peel cellulose-g-acrylic acid hydrogel loaded with kaolin and sepia ink. Cellulose, 2017, 24, 69-84.	4.9	55

Huihua Huang

#	Article	IF	CITATIONS
19	Effect of thermal processing on genistein, daidzein and glycitein content in soymilk. Journal of the Science of Food and Agriculture, 2006, 86, 1110-1114.	3.5	51
20	Modification of pineapple peel fibre with succinic anhydride for Cu ²⁺ , Cd ²⁺ and Pb ²⁺ removal from aqueous solutions. Environmental Technology (United Kingdom), 2011, 32, 739-746.	2.2	48
21	Enhanced performances of polyvinyl alcohol films by introducing tannic acid and pineapple peel-derived cellulose nanocrystals. Cellulose, 2018, 25, 4623-4637.	4.9	48
22	Preparation and characterization of cellulose composite hydrogels from tea residue and carbohydrate additives. Carbohydrate Polymers, 2016, 147, 226-233.	10.2	45
23	Synthesis of self-healing waterborne polyurethanes containing sulphonate groups. RSC Advances, 2017, 7, 20093-20100.	3.6	43
24	Preparation, properties and drug controlled release of chitin-based hydrogels: An updated review. Carbohydrate Polymers, 2022, 283, 119177.	10.2	42
25	Effects of tea polyphenols on the activities of soybean trypsin inhibitors and trypsin. Journal of the Science of Food and Agriculture, 2004, 84, 121-126.	3.5	36
26	Characterisation and comparison of phenols, flavonoids and isoflavones of soymilk and their correlations with antioxidant activity. International Journal of Food Science and Technology, 2014, 49, 2290-2298.	2.7	32
27	Characterization and behavior of composite hydrogel prepared from bamboo shoot cellulose and β-cyclodextrin. International Journal of Biological Macromolecules, 2016, 89, 527-534.	7.5	32
28	Surface morphology and protective effect of Hericium erinaceus polysaccharide on cyclophosphamide-induced immunosuppression in mice. Carbohydrate Polymers, 2021, 251, 116930.	10.2	32
29	Impacts of some macromolecules on the characteristics of hydrogels prepared from pineapple peel cellulose using ionic liquid. Cellulose, 2013, 20, 2923-2933.	4.9	31
30	Temperature/pH dual sensitive Hericium erinaceus residue carboxymethyl chitin/poly (N-isopropyl) Tj ETQq0 0 0 r	gBT /Over 4.9	lock 10 Tf 50
31	Preparation and characterization of papain embedded in magnetic cellulose hydrogels prepared from tea residue. Journal of Molecular Liquids, 2017, 232, 449-456.	4.9	27
32	Magnetic sensitive Hericium erinaceus residue chitin/Cu hydrogel nanocomposites for H2 generation by catalyzing NaBH4 hydrolysis. Carbohydrate Polymers, 2020, 229, 115426.	10.2	26
33	Smart pH/magnetic sensitive Hericium erinaceus residue carboxymethyl chitin/Fe3O4 nanocomposite hydrogels with adjustable characteristics. Carbohydrate Polymers, 2020, 246, 116644.	10.2	26
34	Green magnetic hydrogels synthesis, characterization and flavourzyme immobilization based on chitin from Hericium erinaceus residue and polyvinyl alcohol. International Journal of Biological Macromolecules, 2019, 138, 462-472.	7.5	24
35	Extraction of a novel fungal chitin from Hericium erinaceus residue using multistep mild procedures. International Journal of Biological Macromolecules, 2020, 156, 1279-1286.	7.5	23
36	Smart pH-Sensitive Hydrogel Based on the Pineapple Peel-Oxidized Hydroxyethyl Cellulose and the Hericium erinaceus Residue Carboxymethyl Chitosan for Use in Drug Delivery. Biomacromolecules, 2022, 23, 253-264.	5.4	23

Huihua Huang

#	Article	IF	CITATIONS
37	Changes of trypsin in activity and secondary structure induced by complex with trypsin inhibitors and tea polyphenol. European Food Research and Technology, 2008, 227, 361-365.	3.3	22
38	Changes of heat-treated soymilks in bioactive compounds and their antioxidant activities under in vitro gastrointestinal digestion. European Food Research and Technology, 2014, 239, 637-652.	3.3	20
39	Enzymatic Production of Highly Unsaturated Monoacyglycerols and Diacylglycerols and Their Emulsifying Effects on the Storage Stability of a Palm Oil Based Shortening System. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 1175-1188.	1.9	20
40	Two-Stage Enzymatic Preparation of Eicosapentaenoic Acid (EPA) And Docosahexaenoic Acid (DHA) Enriched Fish Oil Triacylglycerols. Journal of Agricultural and Food Chemistry, 2018, 66, 218-227.	5.2	19
41	A fungal chitin derived from Hericium erinaceus residue: Dissolution, gelation and characterization. International Journal of Biological Macromolecules, 2020, 152, 456-464.	7.5	19
42	Construction of hydrogels based on the homogeneous carboxymethylated chitin from Hericium erinaceus residue: Role of carboxymethylation degree. Carbohydrate Polymers, 2021, 262, 117953.	10.2	17
43	A novel Hericium erinaceus polysaccharide: Structural characterization and prevention of H2O2-induced oxidative damage in GES-1 cells. International Journal of Biological Macromolecules, 2020, 154, 1460-1470.	7.5	14
44	Interesterification of rice bran wax and palm olein catalyzed by lipase: Crystallization behaviours and characterization. Food Chemistry, 2019, 286, 29-37.	8.2	13
45	Preparation, Characterization and Gelation of a Fungal Nano Chitin Derived from Hericium erinaceus Residue. Polymers, 2022, 14, 474.	4.5	7
46	Changes in inhibitory activity and secondary conformation of soybean trypsin inhibitors induced by tea polyphenol complexation. Journal of the Science of Food and Agriculture, 2009, 89, 2435-2439.	3.5	6
47	Comparison of cellulose nanocrystals from pineapple residues and its preliminary application for Pickering emulsions. Nanotechnology, 2021, 32, 495708.	2.6	6
48	Changes of porcine pancreas αâ€amylase in activity and secondary conformations under inhibition of tea polyphenols. International Journal of Food Science and Technology, 2016, 51, 1537-1543.	2.7	4
49	Effects of epicatechin gallate (ECG) on fetal bovine serum (FBS)-induced steatosis in human liver cell line L02 and 2,2′-azobis (2-amidinopropane) (AAPH)-induced oxidative stress in human erythrocytes. European Food Research and Technology, 2016, 242, 495-504.	3.3	4
50	A study on chitosan-coated liposomes as a carrier of bovine serum albumin as oral protein drug. Journal of Dispersion Science and Technology, 0, , 1-10.	2.4	4
51	Construction of hydrogels based on the chitin from Hericium erinaceus residue: role of molecular weight. Cellulose, 2022, 29, 2211-2222.	4.9	3