
Maria Paola Castelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8736300/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Drugs of Abuse on Putative Rostromedial Tegmental Neurons, Inhibitory Afferents to Midbrain Dopamine Cells. Neuropsychopharmacology, 2011, 36, 589-602.	5.4	135
2	Male and Female Rats Differ in Brain Cannabinoid CB1 Receptor Density and Function and in Behavioural Traits Predisposing to Drug Addiction: Effect of Ovarian Hormones. Current Pharmaceutical Design, 2014, 20, 2100-2113.	1.9	108
3	Adolescent exposure to nicotine and/or the cannabinoid agonist CP 55,940 induces gender-dependent long-lasting memory impairments and changes in brain nicotinic and CB ₁ cannabinoid receptors. Journal of Psychopharmacology, 2011, 25, 1676-1690.	4.0	97
4	PPARα Regulates Cholinergic-Driven Activity of Midbrain Dopamine Neurons via a Novel Mechanism Involving α7 Nicotinic Acetylcholine Receptors. Journal of Neuroscience, 2013, 33, 6203-6211.	3.6	79
5	Distribution of GABAB receptor mRNAs in the rat brain and peripheral organs. Life Sciences, 1999, 64, 1321-1328.	4.3	77
6	Native CB1 receptor affinity, intrinsic activity and accumbens shell dopamine stimulant properties of third generation SPICE/K2 cannabinoids: BB-22, 5F-PB-22, 5F-AKB-48 and STS-135. Neuropharmacology, 2016, 105, 630-638.	4.1	67
7	Thyroid transcription factor 1 activates the promoter of the thyrotropin receptor gene. Molecular Endocrinology, 1993, 7, 1589-1595.	3.7	67
8	Design, Synthesis, and Biological Evaluation of New 1,8-Naphthyridin-4(1H)-on-3-carboxamide and Quinolin-4(1H)-on-3-carboxamide Derivatives as CB2Selective Agonists. Journal of Medicinal Chemistry, 2006, 49, 5947-5957.	6.4	66
9	Selective Î ³ -hydroxybutyric acid receptor ligands increase extracellular glutamate in the hippocampus, but fail to activate G protein and to produce the sedative/hypnotic effect of Î ³ -hydroxybutyric acid. Journal of Neurochemistry, 2003, 87, 722-732.	3.9	65
10	Chronic morphine and naltrexone fail to modify μ-opioid receptor mRNA levels in the rat brain. Molecular Brain Research, 1997, 45, 149-153.	2.3	64
11	Regional distribution of 5α-reductase type 2 in the adult rat brain: An immunohistochemical analysis. Psychoneuroendocrinology, 2013, 38, 281-293.	2.7	62
12	Quantitative autoradiographic distribution of γ-hydroxybutyric acid binding sites in human and monkey brain. Molecular Brain Research, 2000, 78, 91-99.	2.3	57
13	Central effects of 1,4-butanediol are mediated by GABAB receptors via its conversion into γ-hydroxybutyric acid. European Journal of Pharmacology, 2002, 441, 157-163.	3.5	56
14	NMDARs Mediate the Role of Monoamine Oxidase A in Pathological Aggression. Journal of Neuroscience, 2012, 32, 8574-8582.	3.6	47
15	Enhanced Endocannabinoid-Mediated Modulation of Rostromedial Tegmental Nucleus Drive onto Dopamine Neurons in Sardinian Alcohol-Preferring Rats. Journal of Neuroscience, 2014, 34, 12716-12724.	3.6	47
16	Activation of GABAB receptors reverses spontaneous gating deficits in juvenile DBA/2J mice. Psychopharmacology, 2007, 194, 361-369.	3.1	43
17	Protective, restorative, and therapeutic properties of recombinant colony-stimulating factors. Blood, 1989, 73, 2093-2103.	1.4	41
18	The cannabinoid receptor antagonist SR-141716A induces penile erection in male rats: Involvement of paraventricular glutamic acid and nitric oxide. Neuropharmacology, 2006, 50, 219-228.	4.1	39

#	Article	IF	CITATIONS
19	Characterization of COR627 and COR628, Two Novel Positive Allosteric Modulators of the GABA _B Receptor. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 529-538.	2.5	38
20	Cannabinoid CB1 receptors in the paraventricular nucleus and central control of penile erection: Immunocytochemistry, autoradiography and behavioral studies. Neuroscience, 2007, 147, 197-206.	2.3	37
21	Molecular pharmacology of the beta-adrenergic receptor on THP-1 cells. International Journal of Immunopharmacology, 1993, 15, 219-228.	1.1	36
22	A Review of Pharmacology of NCSâ€382, a Putative Antagonist of γâ€Hydroxybutyric Acid (GHB) Receptor. CNS Neuroscience & Therapeutics, 2004, 10, 243-260.	4.0	35
23	Synthesis and Pharmacological Characterization of 2-(Acylamino)thiophene Derivatives as Metabolically Stable, Orally Effective, Positive Allosteric Modulators of the GABA _B Receptor. Journal of Medicinal Chemistry, 2013, 56, 3620-3635.	6.4	33
24	The aggression and behavioral abnormalities associated with monoamine oxidase A deficiency are rescued by acute inhibition of serotonin reuptake. Journal of Psychiatric Research, 2014, 56, 1-9.	3.1	33
25	Dysregulation of the endogenous cannabinoid system in adult rats prenatally treated with the cannabinoid agonist WIN 55,212-2. European Journal of Pharmacology, 2007, 573, 11-19.	3.5	32
26	Influence of caffeine on 3,4â€methylenedioxymethamphetamineâ€induced dopaminergic neuron degeneration and neuroinflammation is ageâ€dependent. Journal of Neurochemistry, 2016, 136, 148-162.	3.9	31
27	The Role of the Endocannabinoid System in Eating Disorders: Neurochemical and Behavioural Preclinical Evidence. Current Pharmaceutical Design, 2014, 20, 2089-2099.	1.9	30
28	Sex and Gender Differences in the Effects of Novel Psychoactive Substances. Brain Sciences, 2020, 10, 606.	2.3	28
29	6â€Hydroxydopamine lesion in the ventral tegmental area fails to reduce extracellular dopamine in the cerebral cortex. Journal of Neuroscience Research, 2008, 86, 1647-1658.	2.9	25
30	Anti-Alcohol and Anxiolytic Properties of a New Chemical Entity, GET73. Frontiers in Psychiatry, 2012, 3, 8.	2.6	25
31	Neurochemical and Behavioral Profiling in Male and Female Rats of the Psychedelic Agent 25I-NBOMe. Frontiers in Pharmacology, 2019, 10, 1406.	3.5	25
32	Multi-Faceted Aspects ofGamma-Hydroxybutyric Acid: A Neurotransmitter, Therapeutic Agent and Drug of Abuse. Mini-Reviews in Medicinal Chemistry, 2008, 8, 1188-1202.	2.4	22
33	î"9-Tetrahydrocannabinol Prevents Methamphetamine-Induced Neurotoxicity. PLoS ONE, 2014, 9, e98079.	2.5	22
34	Rimonabant, a potent CB1 cannabinoid receptor antagonist, is a Gαi/o protein inhibitor. Neuropharmacology, 2018, 133, 107-120.	4.1	21
35	(â^')S amisulpride binds with high affinity to cloned dopamine D3 and D2 receptors. European Journal of Pharmacology, 2001, 432, 143-147.	3.5	20
36	Stereoselectivity of NCS-382 binding to γ-hydroxybutyrate receptor in the rat brain. European Journal of Pharmacology, 2002, 446, 1-5.	3.5	20

Maria Paola Castelli

#	Article	IF	CITATIONS
37	Effects of antiestrogen and progestin on immune functions in breast cancer patients. Cancer, 1988, 61, 2214-2218.	4.1	19
38	Limited Access to a High Fat Diet Alters Endocannabinoid Tone in Female Rats. Frontiers in Neuroscience, 2018, 12, 40.	2.8	19
39	Impaired brain endocannabinoid tone in the activityâ€based model of anorexia nervosa. International Journal of Eating Disorders, 2019, 52, 1251-1262.	4.0	19
40	Methamphetamine neurotoxicity increases brain expression and alters behavioral functions of CB1 cannabinoid receptors. Journal of Psychiatric Research, 2010, 44, 944-955.	3.1	18
41	Methamphetamine Induces Long-Term Alterations in Reactivity to Environmental Stimuli: Correlation with Dopaminergic and Serotonergic Toxicity. Neurotoxicity Research, 2009, 15, 232-245.	2.7	17
42	The New Compound GET73, N-[(4-trifluoromethyl)benzyl]4-methoxybutyramide, Regulates Hippocampal Aminoacidergic Transmission Possibly Via an Allosteric Modulation of mGlu5 Receptor. Behavioural Evidence of its "Anti-Alcohol―and Anxiolytic Properties. Current Medicinal Chemistry, 2013, 20, 3339-3357.	2.4	15
43	α2A adrenergic receptors highly expressed in mesoprefrontal dopamine neurons. Neuroscience, 2016, 332, 130-139.	2.3	13
44	Repeated exposure to JWHâ€018 induces adaptive changes in the mesolimbic and mesocortical dopaminergic pathways, glial cells alterations, and behavioural correlates. British Journal of Pharmacology, 2021, 178, 3476-3497.	5.4	12
45	Up-regulation of GABAB receptors by chronic administration of the GABAB receptor antagonist SCH 50,911. European Journal of Pharmacology, 2005, 515, 94-98.	3.5	11
46	Suppressing effect of saikosaponin A, an active ingredient of Bupleurum falcatum, on chocolate self-administration and reinstatement of chocolate seeking in rats. Neuroscience Letters, 2017, 638, 211-217.	2.1	11
47	Continuous subcutaneous insulin infusion (CSII) in pregnant diabetic patients. Prenatal Diagnosis, 1987, 7, 41-50.	2.3	10
48	Differential G-protein coupling to GABAB receptor in limbic areas of alcohol-preferring and -nonpreferring rats. European Journal of Pharmacology, 2005, 523, 67-70.	3.5	10
49	The GABAB receptor positive allosteric modulator COR659: In vitro metabolism, in vivo pharmacokinetics in rats, synthesis and pharmacological characterization of metabolically protected derivatives. European Journal of Pharmaceutical Sciences, 2020, 155, 105544.	4.0	9
50	Human Neuronal Cell Lines as An In Vitro Toxicological Tool for the Evaluation of Novel Psychoactive Substances. International Journal of Molecular Sciences, 2021, 22, 6785.	4.1	8
51	Reversible Disruption of Pre-Pulse Inhibition in Hypomorphic-Inducible and Reversible CB1-/- Mice. PLoS ONE, 2012, 7, e35013.	2.5	8
52	Predisposition to Alcohol Drinking and Alcohol Consumption Alter Expression of Calcitonin Gene-Related Peptide, Neuropeptide Y, and Microglia in Bed Nucleus of Stria Terminalis in a Subnucleus-Specific Manner. Frontiers in Cellular Neuroscience, 2019, 13, 158.	3.7	7
53	Distribution and Localization of the GABAB Receptor. , 2016, , 75-92.		6
54	In vitro and in vivo pharmacological characterization of SSD114, a novel GABAB positive allosteric modulator. European Journal of Pharmacology, 2016, 791, 115-123.	3.5	6

MARIA PAOLA CASTELLI

#	Article	IF	CITATIONS
55	In Vitro Functional Characterization of GET73 as Possible Negative Allosteric Modulator of Metabotropic Glutamate Receptor 5. Frontiers in Pharmacology, 2018, 9, 327.	3.5	6
56	COR758, a negative allosteric modulator of GABAB receptors. Neuropharmacology, 2021, 189, 108537.	4.1	6
57	Synthesis, structural properties, and pharmacological evaluation of 2-(acylamino)thiophene-3-carboxamides and analogues thereof. RSC Advances, 2014, 4, 1782-1793.	3.6	5
58	Dopamine D3 receptor antisense oligodeoxynucleotide potentiates imipramine-induced dopaminergic behavioural supersensitivity. Behavioural Pharmacology, 2006, 17, 101-106.	1.7	4
59	Cannabis and the Use of Amphetamine-Like Substances. , 2017, , e101-e110.		1
60	Recombinant cytokines IL-2, IL-1, IFN-G, G-CSF and GM-CSF augment CFU-C activity in normal, cyclophosphamide-treated or irradiated mice as well as reduce the lethality of these myelotoxic agents. International Journal of Immunopharmacology, 1988, 10, 52.	1.1	0
61	Structure optimization of positive allosteric modulators of GABAB receptors led to the unexpected discovery of antagonists/potential negative allosteric modulators. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127443.	2.2	0