João Carlos Sousa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8736062/publications.pdf Version: 2024-02-01

JOÃEO CARLOS SOUSA

#	Article	IF	CITATIONS
1	Lipocalin-2 does not influence EAE clinical score but it increases inflammation in central nervous system. Journal of Neuroimmunology, 2022, 368, 577872.	2.3	5
2	Altered astrocytic function in experimental neuroinflammation and multiple sclerosis. Glia, 2021, 69, 1341-1368.	4.9	24
3	Novel concept of exosome-like liposomes for the treatment of Alzheimer's disease. Journal of Controlled Release, 2021, 336, 130-143.	9.9	43
4	OmniSARS2: A Highly Sensitive and Specific RT-qPCR-Based COVID-19 Diagnostic Method Designed to Withstand SARS-CoV-2 Lineage Evolution. Biomedicines, 2021, 9, 1314.	3.2	8
5	Correlation Analysis between Hemoglobin and C-Reactive Protein in Patients Admitted to an Emergency Unit. Journal of Clinical Medicine, 2021, 10, 5411.	2.4	4
6	The Role of Biobanks in the Fight against COVID-19 Pandemic: The Portuguese Response. Acta Medica Portuguesa, 2021, 35, .	0.4	0
7	Massive dissemination of a SARS-CoV-2 Spike Y839 variant in Portugal. Emerging Microbes and Infections, 2020, 9, 2488-2496.	6.5	20
8	Bioorthogonal Labeling Reveals Different Expression of Glycans in Mouse Hippocampal Neuron Cultures during Their Development. Molecules, 2020, 25, 795.	3.8	3
9	Beyond Brain Signaling. , 2020, , 1-32.		0
10	Structural and molecular correlates of cognitive aging in the rat. Scientific Reports, 2019, 9, 2005.	3.3	31
11	Voluntary running rescues the defective hippocampal neurogenesis and behaviour observed in lipocalin 2-null mice. Scientific Reports, 2019, 9, 1649.	3.3	12
12	A Resting-State Functional MR Imaging and Spectroscopy Study of the Dorsal Hippocampus in the Chronic Unpredictable Stress Rat Model. Journal of Neuroscience, 2019, 39, 3640-3650.	3.6	28
13	The SIGMA rat brain templates and atlases for multimodal MRI data analysis and visualization. Nature Communications, 2019, 10, 5699.	12.8	73
14	Lipocalin-2 regulates adult neurogenesis and contextual discriminative behaviours. Molecular Psychiatry, 2018, 23, 1031-1039.	7.9	44
15	The dynamics of stress: a longitudinal MRI study of rat brain structure and connectome. Molecular Psychiatry, 2018, 23, 1998-2006.	7.9	60
16	Adult Hippocampal Neurogenesis Modulation by the Membrane-Associated Progesterone Receptor Family Member Neudesin. Frontiers in Cellular Neuroscience, 2018, 12, 463.	3.7	9
17	Metabolism and adult neurogenesis: Towards an understanding of the role of lipocalin-2 and iron-related oxidative stress. Neuroscience and Biobehavioral Reviews, 2018, 95, 73-84.	6.1	16
18	The choroid plexus in health and in disease: dialogues into and out of the brain. Neurobiology of Disease, 2017, 107, 32-40.	4.4	77

JOãO CARLOS SOUSA

#	Article	IF	CITATIONS
19	Descriptive Analysis of LAP1 Distribution and That of Associated Proteins throughout Spermatogenesis. Membranes, 2017, 7, 22.	3.0	14
20	Bioengineered cell culture systems of central nervous system injury and disease. Drug Discovery Today, 2016, 21, 1456-1463.	6.4	5
21	Insights on the pathophysiology of Alzheimer's disease: The crosstalk between amyloid pathology, neuroinflammation and the peripheral immune system. Neuroscience and Biobehavioral Reviews, 2016, 68, 547-562.	6.1	114
22	Nano- and micro-based systems for immunotolerance induction in multiple sclerosis. Human Vaccines and Immunotherapeutics, 2016, 12, 1-5.	3.3	7
23	The choroid plexus is modulated by various peripheral stimuli: implications to diseases of the central nervous system. Frontiers in Cellular Neuroscience, 2015, 9, 136.	3.7	31
24	Mesenchymal stem cells secretome as a modulator of the neurogenic niche: basic insights and therapeutic opportunities. Frontiers in Cellular Neuroscience, 2015, 9, 249.	3.7	90
25	From the periphery to the brain: Lipocalin-2, a friend or foe?. Progress in Neurobiology, 2015, 131, 120-136.	5.7	132
26	The choroid plexus transcriptome reveals changes in type I and II interferon responses in a mouse model of Alzheimer's disease. Brain, Behavior, and Immunity, 2015, 49, 280-292.	4.1	60
27	Methylation at the CpG island shore region upregulates <i>Nr3c1</i> promoter activity after early-life stress. Epigenetics, 2015, 10, 247-257.	2.7	98
28	Sensitive label-free electron chemical capacitive signal transduction for D-dimer electroanalysis. Electrochimica Acta, 2015, 182, 946-952.	5.2	30
29	Proof of Concept of the Electrochemical Sensing of 3â€iodothyronamine (T ₁ AM) and Thyronamine (T ₀ AM). ChemElectroChem, 2014, 1, 1623-1626.	3.4	4
30	Lipocalin 2 modulates the cellular response to amyloid beta. Cell Death and Differentiation, 2014, 21, 1588-1599.	11.2	59
31	Detection of the Glucocorticoid Receptors in Brain Protein Extracts by SDS-PAGE. Methods in Molecular Biology, 2014, 1204, 233-242.	0.9	1
32	Blood–brain-barriers in aging and in Alzheimer's disease. Molecular Neurodegeneration, 2013, 8, 38.	10.8	222
33	Neudesin is involved in anxiety behavior: structural and neurochemical correlates. Frontiers in Behavioral Neuroscience, 2013, 7, 119.	2.0	25
34	Lipocalin-2 is involved in emotional behaviors and cognitive function. Frontiers in Cellular Neuroscience, 2013, 7, 122.	3.7	69
35	Unbiased Stereological Method to Assess Proliferation Throughout the Subependymal Zone. Methods in Molecular Biology, 2013, 1035, 141-152.	0.9	3
36	Stress shifts the response of the bed nucleus of the stria terminalis to an anxiogenic mode. European Journal of Neuroscience, 2012, 36, 3396-3406.	2.6	44

JOãO CARLOS SOUSA

#	Article	IF	CITATIONS
37	Topographical Analysis of the Subependymal Zone Neurogenic Niche. PLoS ONE, 2012, 7, e38647.	2.5	13
38	Modulation of iron metabolism in aging and in Alzheimer's disease: relevance of the choroid plexus. Frontiers in Cellular Neuroscience, 2012, 6, 25.	3.7	40
39	Do genes and environment meet to regulate cerebrospinal fluid dynamics? Relevance for schizophrenia. Frontiers in Cellular Neuroscience, 2012, 6, 31.	3.7	21
40	Lipocalin 2 is present in the EAE brain and is modulated by natalizumab. Frontiers in Cellular Neuroscience, 2012, 6, 33.	3.7	78
41	The path from the choroid plexus to the subventricular zone: go with the flow!. Frontiers in Cellular Neuroscience, 2012, 6, 34.	3.7	79
42	Transcriptome signature of the adult mouse choroid plexus. Fluids and Barriers of the CNS, 2011, 8, 10.	5.0	88
43	Brain Barriers and the Acute-Phase Response. , 2011, , .		0
44	Teaching the extracellular matrix and introducing online databases within a multidisciplinary course with iâ€cellâ€MATRIX. Biochemistry and Molecular Biology Education, 2010, 38, 79-84.	1.2	1
45	Altered Iron Metabolism Is Part of the Choroid Plexus Response to Peripheral Inflammation. Endocrinology, 2009, 150, 2822-2828.	2.8	70
46	The choroid plexus response to a repeated peripheral inflammatory stimulus. BMC Neuroscience, 2009, 10, 135.	1.9	60
47	Kinetic Profile of the Transcriptome Changes Induced in the Choroid Plexus by Peripheral Inflammation. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 921-932.	4.3	95
48	Chronic Stress Causes Frontostriatal Reorganization and Affects Decision-Making. Science, 2009, 325, 621-625.	12.6	710
49	Stress and the Neuroendocrinology of Anxiety Disorders. Current Topics in Behavioral Neurosciences, 2009, 2, 97-118.	1.7	71
50	What Have We Learned from Transthyretin-Null Mice: Novel Functions for Transthyretin?. , 2009, , 281-295.		1
51	Mismatches between the conceptual level of tests and faculty beliefs. FASEB Journal, 2009, 23, 539.1.	0.5	0
52	Lipocalin 2 is a Choroid Plexus Acute-Phase Protein. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 450-455.	4.3	80
53	Lithium blocks stress-induced changes in depressive-like behavior and hippocampal cell fate: The role of glycogen-synthase-kinase-3β. Neuroscience, 2008, 152, 656-669.	2.3	151
54	The Absence of Transthyretin does not Impair Regulation of Lipid and Glucose Metabolism. Hormone and Metabolic Research, 2007, 39, 529-533.	1.5	8

JOãO CARLOS SOUSA

#	Article	IF	CITATIONS
55	Transthyretin and Alzheimer's disease: Where in the brain?. Neurobiology of Aging, 2007, 28, 713-718.	3.1	97
56	The choroid plexus response to peripheral inflammatory stimulus. Neuroscience, 2007, 144, 424-430.	2.3	47
57	Transthyretin influences spatial reference memory. Neurobiology of Learning and Memory, 2007, 88, 381-385.	1.9	61
58	Hormone-Mediated Gene Regulation and Bioinformatics: Learning One from the Other. PLoS ONE, 2007, 2, e481.	2.5	4
59	Programming effects of antenatal dexamethasone in the developing mesolimbic pathways. Synapse, 2007, 61, 40-49.	1.2	50
60	LEARNING HORMONE ACTION MECHANISMS WITH BIOINFORMATICS. Journal of Biochemistry Education, 2007, 5, 23.	0.0	0
61	Hormone mediated nuclear effects and bioinformatics: learning one from the other. FASEB Journal, 2006, 20, A975.	0.5	0
62	Transthyretin is not necessary for thyroid hormone metabolism in conditions of increased hormone demand. Journal of Endocrinology, 2005, 187, 257-266.	2.6	21
63	Transthyretin is involved in depression-like behaviour and exploratory activity. Journal of Neurochemistry, 2004, 88, 1052-1058.	3.9	111
64	Thyroid hormone distribution in the mouse brain: the role of transthyretin. Neuroscience, 2002, 113, 837-847.	2.3	51