Daniel P Raleigh

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8735938/daniel-p-raleigh-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 243
 12,026
 63
 97

 papers
 citations
 h-index
 g-index

 248
 13,027
 6.3
 6.39

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
243	Quantitative Analysis of Protein Unfolded State Energetics: Experimental and Computational Studies Demonstrate That Non-Native Side-Chain Interactions Stabilize Local Native Backbone Structure. <i>Journal of Physical Chemistry B</i> , 2021 , 125, 3269-3277	3.4	O
242	Cyclic Ion Mobility-Collision Activation Experiments Elucidate Protein Behavior in the Gas Phase. Journal of the American Society for Mass Spectrometry, 2021 , 32, 1545-1552	3.5	8
241	Scaffold Hopping Transformations Using Auxiliary Restraints for Calculating Accurate Relative Binding Free Energies. <i>Journal of Chemical Theory and Computation</i> , 2021 , 17, 3710-3726	6.4	3
240	Protein unfolded states populated at high and ambient pressure are similarly compact. <i>Biophysical Journal</i> , 2021 , 120, 2592-2598	2.9	4
239	The Fluorescent Dye 1,6-Diphenyl-1,3,5-hexatriene Binds to Amyloid Fibrils Formed by Human Amylin and Provides a New Probe of Amylin Amyloid Kinetics. <i>Biochemistry</i> , 2021 , 60, 1964-1970	3.2	O
238	Preparation of Asymmetric Vesicles with Trapped CsCl Avoids Osmotic Imbalance, Non-Physiological External Solutions, and Minimizes Leakage. <i>Langmuir</i> , 2021 , 37, 11611-11617	4	1
237	Analysis of Amylin Consensus Sequences Suggests That Human Amylin Is Not Optimized to Minimize Amyloid Formation and Provides Clues to Factors That Modulate Amyloidogenicity. <i>ACS Chemical Biology</i> , 2020 , 15, 1408-1416	4.9	3
236	Analysis of Proline Substitutions Reveals the Plasticity and Sequence Sensitivity of Human IAPP Amyloidogenicity and Toxicity. <i>Biochemistry</i> , 2020 , 59, 742-754	3.2	2
235	Differential effects of serine side chain interactions in amyloid formation by islet amyloid polypeptide. <i>Protein Science</i> , 2020 , 29, 555-563	6.3	3
234	Analysis of Prairie Vole Amylin Reveals the Importance of the N-Terminus and Residue 22 in Amyloidogenicity and Cytotoxicity. <i>Biochemistry</i> , 2020 , 59, 471-478	3.2	5
233	Analysis of Baboon IAPP Provides Insight into Amyloidogenicity and Cytotoxicity of Human IAPP. <i>Biophysical Journal</i> , 2020 , 118, 1142-1151	2.9	10
232	The Cold-Unfolded State Is Expanded but Contains Long- and Medium-Range Contacts and Is Poorly Described by Homopolymer Models. <i>Biochemistry</i> , 2020 , 59, 3290-3299	3.2	3
231	Low concentration IL-1[promotes islet amyloid formation by increasing hIAPP release from humanised mouse islets in vitro. <i>Diabetologia</i> , 2020 , 63, 2385-2395	10.3	3
230	Pressure-Temperature Analysis of the Stability of the CTL9 Domain Reveals Hidden Intermediates. <i>Biophysical Journal</i> , 2019 , 116, 445-453	2.9	6
229	Unfolded states under folding conditions accommodate sequence-specific conformational preferences with random coil-like dimensions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 12301-12310	11.5	28
228	The triphenylmethane dye brilliant blue G is only moderately effective at inhibiting amyloid formation by human amylin or at disaggregating amylin amyloid fibrils, but interferes with amyloid assays; Implications for inhibitor design. <i>PLoS ONE</i> , 2019 , 14, e0219130	3.7	2
227	Dissecting the Energetics of Intrinsically Disordered Proteins via a Hybrid Experimental and Computational Approach. <i>Journal of Physical Chemistry B</i> , 2019 , 123, 10394-10402	3.4	6

(2017-2019)

226	Amyloidogenicity and cytotoxicity of des-Lys-1 human amylin provides insight into amylin self-assembly and highlights the difficulties of defining amyloidogenicity. <i>Protein Engineering, Design and Selection</i> , 2019 , 32, 87-93	1.9	7
225	Sterol Structure Strongly Modulates Membrane-Islet Amyloid Polypeptide Interactions. <i>Biochemistry</i> , 2018 , 57, 1868-1879	3.2	7
224	Analysis of the Role of the Conserved Disulfide in Amyloid Formation by Human Islet Amyloid Polypeptide in Homogeneous and Heterogeneous Environments. <i>Biochemistry</i> , 2018 , 57, 3065-3074	3.2	14
223	Size-Dependent Relationships between Protein Stability and Thermal Unfolding Temperature Have Important Implications for Analysis of Protein Energetics and High-Throughput Assays of Protein-Ligand Interactions. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 5278-5285	3.4	10
222	Molecular Signature for Receptor Engagement in the Metabolic Peptide Hormone Amylin. <i>ACS Pharmacology and Translational Science</i> , 2018 , 1, 32-49	5.9	33
221	Heterogeneity in the Folding of Villin Headpiece Subdomain HP36. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 11640-11648	3.4	8
220	Amyloidogenicity, Cytotoxicity, and Receptor Activity of Bovine Amylin: Implications for Xenobiotic Transplantation and the Design of Nontoxic Amylin Variants. <i>ACS Chemical Biology</i> , 2018 , 13, 2747-2757	4.9	11
219	The Unfolded State of the C-Terminal Domain of L9 Expands at Low but Not at Elevated Temperatures. <i>Biophysical Journal</i> , 2018 , 115, 655-663	2.9	6
218	RAGE binds preamyloid IAPP intermediates and mediates pancreatic Lell proteotoxicity. <i>Journal of Clinical Investigation</i> , 2018 , 128, 682-698	15.9	30
217	Selenomethionine Quenching of Tryptophan Fluorescence Provides a Simple Probe of Protein Structure. <i>Biochemistry</i> , 2017 , 56, 1085-1094	3.2	3
216	Evolutionary Adaptation and Amyloid Formation: Does the Reduced Amyloidogenicity and Cytotoxicity of Ursine Amylin Contribute to the Metabolic Adaption of Bears and Polar Bears?. <i>Israel Journal of Chemistry</i> , 2017 , 57, 750-761	3.4	9
215	The N-Terminal Domain of Ribosomal Protein L9 Folds via a Diffuse and Delocalized Transition State. <i>Biophysical Journal</i> , 2017 , 112, 1797-1806	2.9	1
214	Understanding co-polymerization in amyloid formation by direct observation of mixed oligomers. <i>Chemical Science</i> , 2017 , 8, 5030-5040	9.4	31
213	Neprilysin Is Required for Angiotensin-(1-7)ß Ability to Enhance Insulin Secretion via Its Proteolytic Activity to Generate Angiotensin-(1-2). <i>Diabetes</i> , 2017 , 66, 2201-2212	0.9	20
212	Islet Amyloid Polypeptide Membrane Interactions: Effects of Membrane Composition. <i>Biochemistry</i> , 2017 , 56, 376-390	3.2	72
211	A Free Energy Barrier Caused by the Refolding of an Oligomeric Intermediate Controls the Lag Time of Amyloid Formation by hIAPP. <i>Journal of the American Chemical Society</i> , 2017 , 139, 16748-16758	16.4	40
210	The Etell assassin: IAPP cytotoxicity. <i>Journal of Molecular Endocrinology</i> , 2017 , 59, R121-R140	4.5	63
209	Changes in glucosylceramide structure affect virulence and membrane biophysical properties of Cryptococcus neoformans. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2017 , 1859, 2224-2233	3.8	29

208	Detection of Helical Intermediates During Amyloid Formation by Intrinsically Disordered Polypeptides and Proteins. <i>Methods in Molecular Biology</i> , 2016 , 1345, 55-66	1.4	8
207	In Vitro Studies of Membrane Permeability Induced by Amyloidogenic Polypeptides Using Large Unilamellar Vesicles. <i>Methods in Molecular Biology</i> , 2016 , 1345, 283-90	1.4	3
206	Experimental and Computational Analysis of Protein Stabilization by Gly-to-d-Ala Substitution: A Convolution of Native State and Unfolded State Effects. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15682-15689	16.4	17
205	High Pressure ZZ-Exchange NMR Reveals Key Features of Protein Folding Transition States. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15260-15266	16.4	21
204	A Non-perturbing Probe of Coiled Coil Formation Based on Electron Transfer Mediated Fluorescence Quenching. <i>Biochemistry</i> , 2016 , 55, 3685-91	3.2	4
203	Design and Optimization of Anti-amyloid Domain Antibodies Specific for EAmyloid and Islet Amyloid Polypeptide. <i>Journal of Biological Chemistry</i> , 2016 , 291, 2858-73	5.4	29
202	Selenomethionine, p-cyanophenylalanine pairs provide a convenient, sensitive, non-perturbing fluorescent probe of local helical structure. <i>Chemical Communications</i> , 2016 , 52, 2055-8	5.8	8
201	Analysis of the Amyloidogenic Potential of Pufferfish (Takifugu rubripes) Islet Amyloid Polypeptide Highlights the Limitations of Thioflavin-T Assays and the Difficulties in Defining Amyloidogenicity. <i>Biochemistry</i> , 2016 , 55, 510-8	3.2	40
200	Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology. <i>Journal of Diabetes Research</i> , 2016 , 2016, 2798269	3.9	127
199	Time-resolved studies define the nature of toxic IAPP intermediates, providing insight for anti-amyloidosis therapeutics. <i>ELife</i> , 2016 , 5,	8.9	85
198	Human Islet Amyloid Polypeptide N-Terminus Fragment Self-Assembly: Effect of Conserved Disulfide Bond on Aggregation Propensity. <i>Journal of the American Society for Mass Spectrometry</i> , 2016 , 27, 1010-8	3.5	20
197	Positioning the Intracellular Salt Potassium Glutamate in the Hofmeister Series by Chemical Unfolding Studies of NTL9. <i>Biochemistry</i> , 2016 , 55, 2251-9	3.2	17
196	The dye SYPRO orange binds to amylin amyloid fibrils but not pre-fibrillar intermediates. <i>Protein Science</i> , 2016 , 25, 1834-40	6.3	5
195	Insights into the consequences of co-polymerisation in the early stages of IAPP and Alpeptide assembly from mass spectrometry. <i>Analyst, The</i> , 2015 , 140, 6990-9	5	34
194	Analysis of the ability of pramlintide to inhibit amyloid formation by human islet amyloid polypeptide reveals a balance between optimal recognition and reduced amyloidogenicity. <i>Biochemistry</i> , 2015 , 54, 6704-11	3.2	18
193	Screening and classifying small-molecule inhibitors of amyloid formation using ion mobility spectrometry-mass spectrometry. <i>Nature Chemistry</i> , 2015 , 7, 73-81	17.6	203
192	Matrix Metalloproteinase-9 Protects Islets from Amyloid-induced Toxicity. <i>Journal of Biological Chemistry</i> , 2015 , 290, 30475-85	5.4	10
191	Mutational analysis of the ability of resveratrol to inhibit amyloid formation by islet amyloid polypeptide: critical evaluation of the importance of aromatic-inhibitor and histidine-inhibitor interactions. <i>Biochemistry</i> , 2015 , 54, 666-76	3.2	41

(2013-2014)

190	Mutational analysis of preamyloid intermediates: the role of his-tyr interactions in islet amyloid formation. <i>Biophysical Journal</i> , 2014 , 106, 1520-7	2.9	27
189	A structural basis for the regulation of an H-NOX-associated cyclic-di-GMP synthase/phosphodiesterase enzyme by nitric oxide-bound H-NOX. <i>Biochemistry</i> , 2014 , 53, 2126-35	3.2	24
188	Rationally designed, nontoxic, nonamyloidogenic analogues of human islet amyloid polypeptide with improved solubility. <i>Biochemistry</i> , 2014 , 53, 5876-84	3.2	31
187	General strategy for the bioorthogonal incorporation of strongly absorbing, solvation-sensitive infrared probes into proteins. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 7946-53	3.4	26
186	Defining the molecular basis of amyloid inhibitors: human islet amyloid polypeptide-insulin interactions. <i>Journal of the American Chemical Society</i> , 2014 , 136, 12912-9	16.4	58
185	Ion mobility spectrometry-mass spectrometry defines the oligomeric intermediates in amylin amyloid formation and the mode of action of inhibitors. <i>Journal of the American Chemical Society</i> , 2014 , 136, 660-70	16.4	137
184	Aspirin, diabetes, and amyloid: re-examination of the inhibition of amyloid formation by aspirin and ketoprofen. <i>ACS Chemical Biology</i> , 2014 , 9, 1632-7	4.9	8
183	Energetically significant networks of coupled interactions within an unfolded protein. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 12079-84	11.5	41
182	Guilt by Association: The Physical Chemistry and Biology of Protein Aggregation. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 2012-2014	6.4	7
181	Denatured state ensembles with the same radii of gyration can form significantly different long-range contacts. <i>Biochemistry</i> , 2014 , 53, 39-47	3.2	13
180	The ability of insulin to inhibit the formation of amyloid by pro-islet amyloid polypeptide processing intermediates is significantly reduced in the presence of sulfated glycosaminoglycans. <i>Biochemistry</i> , 2014 , 53, 2605-14	3.2	13
179	General amyloid inhibitors? A critical examination of the inhibition of IAPP amyloid formation by inositol stereoisomers. <i>PLoS ONE</i> , 2014 , 9, e104023	3.7	17
178	Role of aromatic interactions in amyloid formation by islet amyloid polypeptide. <i>Biochemistry</i> , 2013 , 52, 333-42	3.2	95
177	Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient Bheet. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19285-90	11.5	182
176	Islet amyloid polypeptide toxicity and membrane interactions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 19279-84	11.5	109
175	Amyloid formation in heterogeneous environments: islet amyloid polypeptide glycosaminoglycan interactions. <i>Journal of Molecular Biology</i> , 2013 , 425, 492-505	6.5	25
174	Experiments and simulations show how long-range contacts can form in expanded unfolded proteins with negligible secondary structure. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 2123-8	11.5	67
173	Islet amyloid: from fundamental biophysics to mechanisms of cytotoxicity. FEBS Letters, 2013, 587, 1106	5 ₃ 188	145

172	Aggregation of islet amyloid polypeptide: from physical chemistry to cell biology. <i>Current Opinion in Structural Biology</i> , 2013 , 23, 82-9	8.1	89
171	The denatured state ensemble contains significant local and long-range structure under native conditions: analysis of the N-terminal domain of ribosomal protein L9. <i>Biochemistry</i> , 2013 , 52, 2662-71	3.2	23
170	Cooperative cold denaturation: the case of the C-terminal domain of ribosomal protein L9. <i>Biochemistry</i> , 2013 , 52, 2402-9	3.2	28
169	Rational modification of protein stability by targeting surface sites leads to complicated results. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 11337-42	11.5	35
168	Two-dimensional infrared spectroscopy reveals the complex behaviour of an amyloid fibril inhibitor. <i>Nature Chemistry</i> , 2012 , 4, 355-60	17.6	145
167	Temperature dependence of water interactions with the amide carbonyls of Ehelices. <i>Biochemistry</i> , 2012 , 51, 5293-9	3.2	22
166	Raising the speed limit for Ehairpin formation. <i>Journal of the American Chemical Society</i> , 2012 , 134, 1447	76-8.4	34
165	Deamidation accelerates amyloid formation and alters amylin fiber structure. <i>Journal of the American Chemical Society</i> , 2012 , 134, 12658-67	16.4	79
164	Ionic strength effects on amyloid formation by amylin are a complicated interplay among Debye screening, ion selectivity, and Hofmeister effects. <i>Biochemistry</i> , 2012 , 51, 8478-90	3.2	110
163	Sensitivity of amyloid formation by human islet amyloid polypeptide to mutations at residue 20. Journal of Molecular Biology, 2012 , 421, 282-95	6.5	64
162	Nucleobindin 1 caps human islet amyloid polypeptide protofibrils to prevent amyloid fibril formation. <i>Journal of Molecular Biology</i> , 2012 , 421, 378-89	6.5	17
161	Analysis of the inhibition and remodeling of islet amyloid polypeptide amyloid fibers by flavanols. <i>Biochemistry</i> , 2012 , 51, 2670-83	3.2	106
160	Morin hydrate inhibits amyloid formation by islet amyloid polypeptide and disaggregates amyloid fibers. <i>Protein Science</i> , 2012 , 21, 373-82	6.3	91
159	Rational design of potent domain antibody inhibitors of amyloid fibril assembly. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 19965-70	11.5	79
158	Biophysical and functional analyses suggest that adenovirus E4-ORF3 protein requires higher-order multimerization to function against promyelocytic leukemia protein nuclear bodies. <i>Journal of Biological Chemistry</i> , 2012 , 287, 22573-83	5.4	13
157	Inhibition of glycosaminoglycan-mediated amyloid formation by islet amyloid polypeptide and proIAPP processing intermediates. <i>Journal of Molecular Biology</i> , 2011 , 406, 491-502	6.5	18
156	Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. <i>Nature Chemical Biology</i> , 2011 , 7, 113-9	11.7	333
155	Tuning protein autoinhibition by domain destabilization. <i>Nature Structural and Molecular Biology</i> , 2011 , 18, 550-5	17.6	25

154	Analysis of electrostatic interactions in the denatured state ensemble of the N-terminal domain of L9 under native conditions. <i>Proteins: Structure, Function and Bioinformatics</i> , 2011 , 79, 3500-10	4.2	19	
153	2DIR spectroscopy of human amylin fibrils reflects stable Bheet structure. <i>Journal of the American Chemical Society</i> , 2011 , 133, 16062-71	16.4	99	
152	Rational and computational design of stabilized variants of cyanovirin-N that retain affinity and specificity for glycan ligands. <i>Biochemistry</i> , 2011 , 50, 10698-712	3.2	18	
151	Differential ordering of the protein backbone and side chains during protein folding revealed by site-specific recombinant infrared probes. <i>Journal of the American Chemical Society</i> , 2011 , 133, 20335-	40 ^{16.4}	38	
150	Azido Homoalanine is a Useful Infrared Probe for Monitoring Local Electrostatistics and Sidechain Solvation in Proteins. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 2158-2162	6.4	47	
149	Competition between intradomain and interdomain interactions: a buried salt bridge is essential for villin headpiece folding and actin binding. <i>Biochemistry</i> , 2011 , 50, 3706-12	3.2	5	
148	Neprilysin impedes islet amyloid formation by inhibition of fibril formation rather than peptide degradation. <i>Journal of Biological Chemistry</i> , 2010 , 285, 18177-83	5.4	29	
147	Nucleobindin 1 is a calcium-regulated guanine nucleotide dissociation inhibitor of G{alpha}i1. <i>Journal of Biological Chemistry</i> , 2010 , 285, 31647-60	5.4	24	
146	Islet amyloid deposition limits the viability of human islet grafts but not porcine islet grafts. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4305-10	11.5	139	
145	Ester to amide switch peptides provide a simple method for preparing monomeric islet amyloid polypeptide under physiologically relevant conditions and facilitate investigations of amyloid formation. <i>Journal of the American Chemical Society</i> , 2010 , 132, 4052-3	16.4	30	
144	Efficient microwave-assisted synthesis of human islet amyloid polypeptide designed to facilitate the specific incorporation of labeled amino acids. <i>Organic Letters</i> , 2010 , 12, 4848-51	6.2	66	
143	Phi-value analysis for ultrafast folding proteins by NMR relaxation dispersion. <i>Journal of the American Chemical Society</i> , 2010 , 132, 450-1	16.4	18	
142	Combination of kinetically selected inhibitors in trans leads to highly effective inhibition of amyloid formation. <i>Journal of the American Chemical Society</i> , 2010 , 132, 14340-2	16.4	42	
141	The ability of rodent islet amyloid polypeptide to inhibit amyloid formation by human islet amyloid polypeptide has important implications for the mechanism of amyloid formation and the design of inhibitors. <i>Biochemistry</i> , 2010 , 49, 872-81	3.2	61	
140	Modulation of p-cyanophenylalanine fluorescence by amino acid side chains and rational design of fluorescence probes of alpha-helix formation. <i>Biochemistry</i> , 2010 , 49, 6290-5	3.2	35	
139	The cold denatured state of the C-terminal domain of protein L9 is compact and contains both native and non-native structure. <i>Journal of the American Chemical Society</i> , 2010 , 132, 4669-77	16.4	33	
138	The sulfated triphenyl methane derivative acid fuchsin is a potent inhibitor of amyloid formation by human islet amyloid polypeptide and protects against the toxic effects of amyloid formation. <i>Journal of Molecular Biology</i> , 2010 , 400, 555-66	6.5	42	
137	Residue-specific, real-time characterization of lag-phase species and fibril growth during amyloid formation: a combined fluorescence and IR study of p-cyanophenylalanine analogs of islet amyloid polypentide. <i>Journal of Molecular Biology</i> 2010 , 400, 878-88	6.5	60	

136	A critical assessment of putative gatekeeper interactions in the villin headpiece helical subdomain. Journal of Molecular Biology, 2010 , 401, 274-85	6.5	12
135	The flavanol (-)-epigallocatechin 3-gallate inhibits amyloid formation by islet amyloid polypeptide, disaggregates amyloid fibrils, and protects cultured cells against IAPP-induced toxicity. <i>Biochemistry</i> , 2010 , 49, 8127-33	3.2	214
134	Toxic oligomers and islet beta cell death: guilty by association or convicted by circumstantial evidence?. <i>Diabetologia</i> , 2010 , 53, 1046-56	10.3	143
133	Islet Amyloid Polypeptide 2010 , 517-541		1
132	Role of Posttranslational Modifications in Amyloid Formation 2010 , 131-144		6
131	Azidohomoalanine: A Conformationally Sensitive IR Probe of Protein Folding, Protein Structure, and Electrostatics. <i>Angewandte Chemie</i> , 2010 , 122, 7635-7637	3.6	8
130	Azidohomoalanine: a conformationally sensitive IR probe of protein folding, protein structure, and electrostatics. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 7473-5	16.4	75
129	Two-dimensional IR spectroscopy and isotope labeling defines the pathway of amyloid formation with residue-specific resolution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 6614-9	11.5	251
128	A critical assessment of the role of helical intermediates in amyloid formation by natively unfolded proteins and polypeptides. <i>Protein Engineering, Design and Selection</i> , 2009 , 22, 453-9	1.9	161
127	Partially folded equilibrium intermediate of the villin headpiece HP67 defined by 13C relaxation dispersion. <i>Journal of Biomolecular NMR</i> , 2009 , 45, 85-98	3	19
126	Native like structure in the unfolded state of the villin headpiece helical subdomain, an ultrafast folding protein. <i>Protein Science</i> , 2009 , 18, 1692-701	6.3	24
125	The unfolded state of the C-terminal domain of the ribosomal protein L9 contains both native and non-native structure. <i>Biochemistry</i> , 2009 , 48, 4707-19	3.2	27
124	A role for helical intermediates in amyloid formation by natively unfolded polypeptides?. <i>Physical Biology</i> , 2009 , 6, 015005	3	155
123	Analysis of core packing in a cooperatively folded miniature protein: the ultrafast folding villin headpiece helical subdomain. <i>Biochemistry</i> , 2009 , 48, 4607-16	3.2	28
122	Two-dimensional infrared spectroscopy provides evidence of an intermediate in the membrane-catalyzed assembly of diabetic amyloid. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 2498-50	5 ^{3.4}	61
121	Strategies for extracting structural information from 2D IR spectroscopy of amyloid: application to islet amyloid polypeptide. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 15679-91	3.4	81
120	Interpretation of p-cyanophenylalanine fluorescence in proteins in terms of solvent exposure and contribution of side-chain quenchers: a combined fluorescence, IR and molecular dynamics study. <i>Biochemistry</i> , 2009 , 48, 9040-6	3.2	69
119	Experimental characterization of the denatured state ensemble of proteins. <i>Methods in Molecular Biology</i> , 2009 , 490, 339-51	1.4	11

118	Characterizing septum inhibition in Mycobacterium tuberculosis for novel drug discovery. <i>Tuberculosis</i> , 2008 , 88, 420-9	2.6	25
117	Temperature-dependent Hammond behavior in a protein-folding reaction: analysis of transition-state movement and ground-state effects. <i>Journal of Molecular Biology</i> , 2008 , 378, 699-706	6.5	10
116	Electrostatic interactions in the denatured state ensemble: their effect upon protein folding and protein stability. <i>Archives of Biochemistry and Biophysics</i> , 2008 , 469, 20-8	4.1	37
115	The low-pH unfolded state of the C-terminal domain of the ribosomal protein L9 contains significant secondary structure in the absence of denaturant but is no more compact than the low-pH urea unfolded state. <i>Biochemistry</i> , 2008 , 47, 9565-73	3.2	20
114	Rifampicin does not prevent amyloid fibril formation by human islet amyloid polypeptide but does inhibit fibril thioflavin-T interactions: implications for mechanistic studies of beta-cell death. <i>Biochemistry</i> , 2008 , 47, 6016-24	3.2	78
113	The fluorescent amino acid p-cyanophenylalanine provides an intrinsic probe of amyloid formation. <i>ChemBioChem</i> , 2008 , 9, 1372-4	3.8	42
112	Mutational analysis of the folding transition state of the C-terminal domain of ribosomal protein L9: a protein with an unusual beta-sheet topology. <i>Biochemistry</i> , 2007 , 46, 1013-21	3.2	14
111	Folding intermediate in the villin headpiece domain arises from disruption of a N-terminal hydrogen-bonded network. <i>Journal of the American Chemical Society</i> , 2007 , 129, 3056-7	16.4	33
110	Amyloid formation by pro-islet amyloid polypeptide processing intermediates: examination of the role of protein heparan sulfate interactions and implications for islet amyloid formation in type 2 diabetes. <i>Biochemistry</i> , 2007 , 46, 12091-9	3.2	47
109	Rational design, structural and thermodynamic characterization of a hyperstable variant of the villin headpiece helical subdomain. <i>Biochemistry</i> , 2007 , 46, 7497-505	3.2	28
108	Residue specific resolution of protein folding dynamics using isotope-edited infrared temperature jump spectroscopy. <i>Biochemistry</i> , 2007 , 46, 3279-85	3.2	105
107	A simple and economical method for the production of 13C,18O-labeled Fmoc-amino acids with high levels of enrichment: applications to isotope-edited IR studies of proteins. <i>Organic Letters</i> , 2007 , 9, 4935-7	6.2	42
106	Use of the novel fluorescent amino acid p-cyanophenylalanine offers a direct probe of hydrophobic core formation during the folding of the N-terminal domain of the ribosomal protein L9 and provides evidence for two-state folding. <i>Biochemistry</i> , 2007 , 46, 12308-13	3.2	48
105	Reconciling the solution and X-ray structures of the villin headpiece helical subdomain: molecular dynamics simulations and double mutant cycles reveal a stabilizing cation-pi interaction. <i>Biochemistry</i> , 2007 , 46, 3624-34	3.2	23
104	Aromatic interactions are not required for amyloid fibril formation by islet amyloid polypeptide but do influence the rate of fibril formation and fibril morphology. <i>Biochemistry</i> , 2007 , 46, 3255-61	3.2	111
103	The cold denatured state is compact but expands at low temperatures: hydrodynamic properties of the cold denatured state of the C-terminal domain of L9. <i>Journal of Molecular Biology</i> , 2007 , 368, 256-6	2 ^{6.5}	36
102	Kinetic isotope effects reveal the presence of significant secondary structure in the transition state for the folding of the N-terminal domain of L9. <i>Journal of Molecular Biology</i> , 2007 , 370, 349-55	6.5	7
101	A single-point mutation converts the highly amyloidogenic human islet amyloid polypeptide into a potent fibrillization inhibitor. <i>Journal of the American Chemical Society</i> , 2007 , 129, 11300-1	16.4	140

100	Ionic-strength-dependent effects in protein folding: analysis of rate equilibrium free-energy relationships and their interpretation. <i>Biochemistry</i> , 2007 , 46, 14206-14	3.2	20
99	Design of a hyperstable protein by rational consideration of unfolded state interactions. <i>Journal of the American Chemical Society</i> , 2006 , 128, 3144-5	16.4	30
98	NMR characterization of a peptide model provides evidence for significant structure in the unfolded state of the villin headpiece helical subdomain. <i>Biochemistry</i> , 2006 , 45, 6940-6	3.2	40
97	pH dependent thermodynamic and amide exchange studies of the C-terminal domain of the ribosomal protein L9: implications for unfolded state structure. <i>Biochemistry</i> , 2006 , 45, 8499-506	3.2	9
96	The unfolded state of NTL9 is compact in the absence of denaturant. <i>Biochemistry</i> , 2006 , 45, 10110-6	3.2	33
95	Characterization of the heparin binding site in the N-terminus of human pro-islet amyloid polypeptide: implications for amyloid formation. <i>Biochemistry</i> , 2006 , 45, 9228-37	3.2	40
94	Solution structure and folding characteristics of the C-terminal SH3 domain of c-Crk-II. <i>Biochemistry</i> , 2006 , 45, 8874-84	3.2	37
93	Destabilization of human IAPP amyloid fibrils by proline mutations outside of the putative amyloidogenic domain: is there a critical amyloidogenic domain in human IAPP?. <i>Journal of Molecular Biology</i> , 2006 , 355, 274-81	6.5	81
92	Multistate folding of the villin headpiece domain. Journal of Molecular Biology, 2006, 355, 1066-77	6.5	53
91	Characterizing a partially folded intermediate of the villin headpiece domain under non-denaturing conditions: contribution of His41 to the pH-dependent stability of the N-terminal subdomain. <i>Journal of Molecular Biology</i> , 2006 , 355, 1078-94	6.5	63
90	Electrostatic interactions in the denatured state and in the transition state for protein folding: effects of denatured state interactions on the analysis of transition state structure. <i>Journal of Molecular Biology</i> , 2006 , 359, 1437-46	6.5	37
89	The unfolded state of the villin headpiece helical subdomain: computational studies of the role of locally stabilized structure. <i>Journal of Molecular Biology</i> , 2006 , 360, 1094-107	6.5	46
88	Efficient high level expression of peptides and proteins as fusion proteins with the N-terminal domain of L9: application to the villin headpiece helical subdomain. <i>Protein Expression and Purification</i> , 2006 , 47, 234-40	2	10
87	Denatured state effects and the origin of nonclassical phi values in protein folding. <i>Journal of the American Chemical Society</i> , 2006 , 128, 16492-3	16.4	38
86	Recovery and purification of highly aggregation-prone disulfide-containing peptides: application to islet amyloid polypeptide. <i>Analytical Biochemistry</i> , 2006 , 351, 181-6	3.1	70
85	A comparative study of the alpha-subdomains of bovine and human alpha-lactalbumin reveals key differences that correlate with molten globule stability. <i>Protein Science</i> , 2005 , 14, 89-96	6.3	5
84	The role of His-18 in amyloid formation by human islet amyloid polypeptide. <i>Biochemistry</i> , 2005 , 44, 16	28 <u>4</u> 291	141
83	Slow folding of a three-helix protein via a compact intermediate. <i>Biochemistry</i> , 2005 , 44, 627-34	3.2	20

(2003-2005)

82	Analysis of the pH-dependent folding and stability of histidine point mutants allows characterization of the denatured state and transition state for protein folding. <i>Journal of Molecular Biology</i> , 2005 , 345, 163-73	6.5	35
81	Direct characterization of the folded, unfolded and urea-denatured states of the C-terminal domain of the ribosomal protein L9. <i>Journal of Molecular Biology</i> , 2005 , 349, 839-46	6.5	30
80	Mutational analysis demonstrates that specific electrostatic interactions can play a key role in the denatured state ensemble of proteins. <i>Journal of Molecular Biology</i> , 2005 , 353, 174-85	6.5	67
79	Fine structure analysis of a protein folding transition state; distinguishing between hydrophobic stabilization and specific packing. <i>Journal of Molecular Biology</i> , 2005 , 354, 693-705	6.5	48
78	Protein folding: defining a "standard" set of experimental conditions and a preliminary kinetic data set of two-state proteins. <i>Protein Science</i> , 2005 , 14, 602-16	6.3	181
77	Incorporation of pseudoproline derivatives allows the facile synthesis of human IAPP, a highly amyloidogenic and aggregation-prone polypeptide. <i>Organic Letters</i> , 2005 , 7, 693-6	6.2	102
76	Effect of modulating unfolded state structure on the folding kinetics of the villin headpiece subdomain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 16662-7	11.5	78
75	The protein folding transition state: what are Phi-values really telling us?. <i>Protein and Peptide Letters</i> , 2005 , 12, 117-22	1.9	49
74	Peptide models provide evidence for significant structure in the denatured state of a rapidly folding protein: the villin headpiece subdomain. <i>Biochemistry</i> , 2004 , 43, 3264-72	3.2	70
73	Role of aromatic interactions in amyloid formation by peptides derived from human Amylin. <i>Biochemistry</i> , 2004 , 43, 15901-8	3.2	109
72	Protein dissection experiments reveal key differences in the equilibrium folding of alpha-lactalbumin and the calcium binding lysozymes. <i>Biochemistry</i> , 2004 , 43, 9961-7	3.2	7
71	Exploiting the right side of the Ramachandran plot: substitution of glycines by D-alanine can significantly increase protein stability. <i>Journal of the American Chemical Society</i> , 2004 , 126, 13194-5	16.4	68
70	Thermodynamics and kinetics of non-native interactions in protein folding: a single point mutant significantly stabilizes the N-terminal domain of L9 by modulating non-native interactions in the denatured state. <i>Journal of Molecular Biology</i> , 2004 , 338, 827-37	6.5	100
69	Stereological analysis of the human testis after vasectomy indicates impairment of spermatogenic efficiency with increasing obstructive interval. <i>Fertility and Sterility</i> , 2004 , 81, 1595-603	4.8	56
68	Domain-specific incorporation of noninvasive optical probes into recombinant proteins. <i>Journal of the American Charitan 2004</i> , 126, 14004.12	16.4	28
	the American Chemical Society, 2004 , 126, 14004-12		
67	Dynamic NMR line-shape analysis demonstrates that the villin headpiece subdomain folds on the microsecond time scale. <i>Journal of the American Chemical Society</i> , 2003 , 125, 6032-3	16.4	117
67 66	Dynamic NMR line-shape analysis demonstrates that the villin headpiece subdomain folds on the	16.4	117

64	phi-Values beyond the ribosomally encoded amino acids: kinetic and thermodynamic consequences of incorporating trifluoromethyl amino acids in a globular protein. <i>Journal of the American Chemical Society</i> , 2003 , 125, 9286-7	16.4	61
63	Surface salt bridges, double-mutant cycles, and protein stability: an experimental and computational analysis of the interaction of the Asp 23 side chain with the N-terminus of the N-terminal domain of the ribosomal protein l9. <i>Biochemistry</i> , 2003 , 42, 7050-60	3.2	64
62	Rapid cooperative two-state folding of a miniature alpha-beta protein and design of a thermostable variant. <i>Journal of Molecular Biology</i> , 2003 , 326, 1261-70	6.5	41
61	Beyond the decoupling approximation in the model free approach for the interpretation of NMR relaxation of macromolecules in solution. <i>Journal of the American Chemical Society</i> , 2003 , 125, 8400-4	16.4	36
60	Low levels of asparagine deamidation can have a dramatic effect on aggregation of amyloidogenic peptides: implications for the study of amyloid formation. <i>Protein Science</i> , 2002 , 11, 342-9	6.3	95
59	Characterization of large peptide fragments derived from the N-terminal domain of the ribosomal protein L9: definition of the minimum folding motif and characterization of local electrostatic interactions. <i>Biochemistry</i> , 2002 , 41, 13360-9	3.2	23
58	pH-dependent stability and folding kinetics of a protein with an unusual alpha-beta topology: the C-terminal domain of the ribosomal protein L9. <i>Journal of Molecular Biology</i> , 2002 , 318, 571-82	6.5	38
57	Temperature-dependent dynamics of the villin headpiece helical subdomain, an unusually small thermostable protein. <i>Journal of Molecular Biology</i> , 2002 , 320, 841-54	6.5	62
56	A protein dissection study demonstrates that two specific hydrophobic clusters play a key role in stabilizing the core structure of the molten globule state of human Elactalbumin. <i>Proteins: Structure, Function and Bioinformatics</i> , 2001 , 42, 237-242	4.2	22
55	Synthesis and purification of amyloidogenic peptides. <i>Analytical Biochemistry</i> , 2001 , 288, 76-82	3.1	31
54	Rescuing a destabilized protein fold through backbone cyclization. <i>Journal of Molecular Biology</i> , 2001 , 308, 1045-62	6.5	95
53	On the relationship between protein stability and folding kinetics: a comparative study of the N-terminal domains of RNase HI, E. coli and Bacillus stearothermophilus L9. <i>Journal of Molecular Biology</i> , 2001 , 312, 569-77	6.5	10
52	A comparative study of peptide models of the alpha-domain of alpha-lactalbumin, lysozyme, and alpha-lactalbumin/lysozyme chimeras allows the elucidation of critical factors that contribute to the ability to form stable partially folded states. <i>Biochemistry</i> , 2001 , 40, 2138-47	3.2	12
51	Solution structure of a peptide model of a region important for the folding of alpha-lactalbumin provides evidence for the formation of nonnative structure in the denatured state. <i>Proteins:</i> Structure, Function and Bioinformatics, 2000 , 38, 189-96	4.2	11
50	Local interactions and the role of the 6-120 disulfide bond in alpha-lactalbumin: implications for formation of the molten globule state. <i>BBA - Proteins and Proteomics</i> , 2000 , 1476, 9-19		4
49	The failure of simple empirical relationships to predict the viscosity of mixed aqueous solutions of guanidine hydrochloride and glucose has important implications for the study of protein folding. <i>Protein Science</i> , 2000 , 9, 1601-3	6.3	18
48	pH-dependent interactions and the stability and folding kinetics of the N-terminal domain of L9. Electrostatic interactions are only weakly formed in the transition state for folding. <i>Journal of Molecular Biology</i> , 2000 , 299, 1091-100	6.5	47
47	Rational modification of protein stability by the mutation of charged surface residues. <i>Biochemistry</i> , 2000 , 39, 872-9	3.2	188

(1998-2000)

of the N-terminal domain does not affect the anomalously slow folding of the C-terminal domain. Biochemistry, 2000 , 39, 4955-62	3.2	12
15N R1IMeasurements Allow the Determination of Ultrafast Protein Folding Rates. <i>Journal of the American Chemical Society</i> , 2000 , 122, 5387-5388	16.4	38
Stereospecificity of the Reaction Catalyzed by Enoyl-CoA Hydratase. <i>Journal of the American Chemical Society</i> , 2000 , 122, 3987-3994	16.4	23
De novo design of helical bundles as models for understanding protein folding and function. <i>Accounts of Chemical Research</i> , 2000 , 33, 745-54	24.3	274
Conformational analysis of peptide fragments derived from the peripheral subunit-binding domain from the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus: evidence for nonrandom structure in the unfolded state. <i>Biopolymers</i> , 1999 , 49, 29-40	2.2	13
Effects of sequential proline substitutions on amyloid formation by human amylin20-29. Biochemistry, 1999 , 38, 1811-8	3.2	178
pKa values and the pH dependent stability of the N-terminal domain of L9 as probes of electrostatic interactions in the denatured state. Differentiation between local and nonlocal interactions. <i>Biochemistry</i> , 1999 , 38, 4896-903	3.2	126
Folding of the multidomain ribosomal protein L9: the two domains fold independently with remarkably different rates. <i>Biochemistry</i> , 1999 , 38, 5643-50	3.2	26
Nativelike structure and stability in a truncation mutant of a protein minidomain: the peripheral subunit-binding domain. <i>Biochemistry</i> , 1999 , 38, 4128-36	3.2	22
Local interactions drive the formation of nonnative structure in the denatured state of human alpha-lactalbumin: a high resolution structural characterization of a peptide model in aqueous solution. <i>Biochemistry</i> , 1999 , 38, 7380-7	3.2	30
Conformational analysis of a set of peptides corresponding to the entire primary sequence of the N-terminal domain of the ribosomal protein L9: evidence for stable native-like secondary structure in the unfolded state. <i>Journal of Molecular Biology</i> , 1999 , 287, 395-407	6.5	32
Effects of varying the local propensity to form secondary structure on the stability and folding kinetics of a rapid folding mixed alpha/beta protein: characterization of a truncation mutant of the N-terminal domain of the ribosomal protein L9. <i>Journal of Molecular Biology</i> , 1999 , 289, 167-74	6.5	25
Submillisecond folding of the peripheral subunit-binding domain. <i>Journal of Molecular Biology</i> , 1999 , 293, 763-8	6.5	71
Defining the core structure of the alpha-lactalbumin molten globule state. <i>Journal of Molecular Biology</i> , 1999 , 294, 213-21	6.5	51
Analysis of amylin cleavage products provides new insights into the amyloidogenic region of human amylin. <i>Journal of Molecular Biology</i> , 1999 , 294, 1375-85	6.5	125
Conformational analysis of peptide fragments derived from the peripheral subunit-binding domain from the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus: Evidence for nonrandom structure in the unfolded state 1999 , 49, 29		1
Local control of peptide conformation: stabilization of cis proline peptide bonds by aromatic proline interactions. <i>Biopolymers</i> , 1998 , 45, 381-94	2.2	85
Amide proton exchange measurements as a probe of the stability and dynamics of the N-terminal domain of the ribosomal protein L9: comparison with the intact protein. <i>Protein Science</i> , 1998 , 7, 1994-7	6.3	6
	of the N-terminal domain does not affect the anomalously slow folding of the C-terminal domain. Biochemistry, 2000, 39, 4955-62 SNR TIMeasurements Allow the Determination of Ultrafast Protein Folding Rates. Journal of the American Chemical Society, 2000, 122, 5387-5388 Stereospecificity of the Reaction Catalyzed by Enoyl-CoA Hydratase. Journal of the American Chemical Society, 2000, 122, 3987-3994 De novo design of helical bundles as models for understanding protein folding and function. Accounts of Chemical Research, 2000, 33, 745-54 Conformational analysis of peptide fragments derived from the peripheral subunit-binding domain from the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus: evidence for nonrandom structure in the unfolded state. Biopolymers, 1999, 49, 29-40 Effects of sequential proline substitutions on amyloid formation by human amylin20-29. Biochemistry, 1999, 38, 1811-8 BYA values and the pH dependent stability of the N-terminal domain of L9 as probes of electrostatic interactions in the denatured state. Differentiation between local and nonlocal interactions. Biochemistry, 1999, 38, 4896-903 Folding of the multidomain ribosomal protein L9: the two domains fold independently with remarkably different rates. Biochemistry, 1999, 38, 5643-50 Nativelike structure and stability in a truncation mutant of a protein minidomain: the peripheral subunit-binding domain. Biochemistry, 1999, 38, 4128-36 Local interactions drive the formation of nonnative structure in the denatured state of human alpha-lactalbumina a high resolution structural characterization of a peptide model in aqueous solution. Biochemistry, 399, 38, 7380-7 Conformational analysis of a set of peptides corresponding to the entire primary sequence of the N-terminal domain of the ribosomal protein L9: violence for stable native-like secondary structure in the unfolded state. Journal of Molecular Biology, 1999, 283, 735-47 Conformational analysis of a set of peptides corresponding to the enti	of the N-terminal domain does not affect the anomalously slow folding of the C-terminal domain. Blochemistry, 2000, 39, 4955-62 16.4 Stereospecificity of the Reaction Catalyzed by Enoyl-CoA Hydratase. Journal of the American Chemical Society, 2000, 122, 5387-5388 Stereospecificity of the Reaction Catalyzed by Enoyl-CoA Hydratase. Journal of the American Chemical Society, 2000, 122, 3987-3994 De novo design of helical bundles as models for understanding protein folding and function. Accounts of Chemical Research, 2000, 33, 745-54 Conformational analysis of peptide fragments derived from the peripheral subunit-binding domain from the pruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus: evidence for nonrandom structure in the unfolded state. Biopolymers, 1999, 49, 29-40 Effects of sequential proline substitutions on amyloid formation by human amylin20-29. Biochemistry, 1999, 38, 1811-8 pKa values and the pH dependent stability of the N-terminal domain of L9 as probes of electrostatic interactions in the denatured state. Differentiation between local and nonlocal interactions. Biochemistry, 1999, 38, 4896-903 Nativelike structure and stability in a truncation mutant of a protein minidomain: the peripheral subunit-binding domain. Biochemistry, 1999, 38, 5643-50 Nativelike structure and stability in a truncation mutant of a protein minidomain: the peripheral subunit-binding domain. Biochemistry, 1999, 38, 4128-36 Local Interactions drive the formation of nonnative structure in the denatured state of human alpha-lactalbumin: a high resolution structural characterization of a peptide model in aqueous solution. Biochemistry, 1999, 38, 7380-7 Conformational analysis of a set of peptides corresponding to the entire primary sequence of the N-terminal domain of the ribosomal protein L9: evidence for stable native-like secondary structure in the unfolded state. Journal of Molecular Biology, 1999, 294, 295, 167-74 Submillisecond folding of the peripheral subunit-binding domain. Journal of Mol

28	Global analysis of the thermal and chemical denaturation of the N-terminal domain of the ribosomal protein L9 in H2O and D2O. Determination of the thermodynamic parameters, deltaH(o), deltaS(o), and deltaC(o)p and evaluation of solvent isotope effects. <i>Protein Science</i> , 1998 , 7, 2405-12	6.3	69
27	Conformational analysis of the interdomain linker of the central homology region of chloroplast initiation factor IF3 supports a structural model of two compact domains connected by a flexible tether. <i>FEBS Letters</i> , 1998 , 433, 153-6	3.8	4
26	Stereospecific 1H and 13C NMR Assignments of Crotonyl CoA and Hexadienoyl CoA: Conformational Analysis and Comparison with ProteinLoA Complexes. <i>Journal of the American Chemical Society</i> , 1998 , 120, 9988-9994	16.4	9
25	Structure and stability of the N-terminal domain of the ribosomal protein L9: evidence for rapid two-state folding. <i>Biochemistry</i> , 1998 , 37, 1025-32	3.2	68
24	A role for the C-terminus of calcitonin in aggregation and gel formation: a comparative study of C-terminal fragments of human and salmon calcitonin. <i>Biochemical and Biophysical Research Communications</i> , 1998 , 245, 344-8	3.4	15
23	Cooperative folding of a protein mini domain: the peripheral subunit-binding domain of the pyruvate dehydrogenase multienzyme complex. <i>Journal of Molecular Biology</i> , 1998 , 276, 479-89	6.5	38
22	On the global architecture of initiation factor IF3: a comparative study of the linker regions from the Escherichia coli protein and the Bacillus stearothermophilus protein. <i>Journal of Molecular Biology</i> , 1998 , 278, 871-8	6.5	20
21	Peptide models of local and long-range interactions in the molten globule state of human alpha-lactalbumin. <i>Journal of Molecular Biology</i> , 1998 , 283, 279-91	6.5	47
20	Global analysis of the effects of temperature and denaturant on the folding and unfolding kinetics of the N-terminal domain of the protein L9. <i>Journal of Molecular Biology</i> , 1998 , 284, 1661-70	6.5	107
19	Local control of peptide conformation: Stabilization of cis proline peptide bonds by aromatic proline interactions 1998 , 45, 381		1
18	Calcium binding peptides from alpha-lactalbumin: implications for protein folding and stability. <i>Biochemistry</i> , 1997 , 36, 4607-15	3.2	33
17	Structure of hexadienoyl-CoA bound to enoyl-CoA hydratase determined by transferred nuclear Overhauser effect measurements: mechanistic predictions based on the X-ray structure of 4-(chlorobenzoyl)-CoA dehalogenase. <i>Biochemistry</i> , 1997 , 36, 2211-20	3.2	36
16	An exceptionally stable helix from the ribosomal protein L9: implications for protein folding and stability. <i>Journal of Molecular Biology</i> , 1997 , 270, 640-7	6.5	40
15	Crystallization of a designed peptide from a molten globule ensemble. Folding & Design, 1996, 1, 57-64		22
14	Thermodynamic genetics of the folding of the B1 immunoglobulin-binding domain from streptococcal protein G. <i>Proteins: Structure, Function and Bioinformatics</i> , 1995 , 21, 11-21	4.2	35
13	A de Novo Designed Protein Mimics the Native State of Natural Proteins. <i>Journal of the American Chemical Society</i> , 1995 , 117, 7558-7559	16.4	95
12	De novo protein design: from molten globules to native-like states. <i>Current Opinion in Structural Biology</i> , 1993 , 3, 601-610	8.1	155
11	A de novo designed protein shows a thermally induced transition from a native to a molten globule-like state. <i>Journal of the American Chemical Society</i> , 1992 , 114, 10079-10081	16.4	72

LIST OF PUBLICATIONS

10	A peptide model for proline isomerism in the unfolded state of staphylococcal nuclease. <i>Journal of Molecular Biology</i> , 1992 , 228, 338-42	6.5	35
9	Multiple-frequency decoupling in magic-angle-spinning NMR of paramagnetic solids. <i>Journal of Magnetic Resonance</i> , 1992 , 97, 162-170		
8	Phosphorus-31 magnetic resonance imaging of hydroxyapatite: a model for bone imaging. <i>Magnetic Resonance in Medicine</i> , 1992 , 25, 1-11	4.4	28
7	De novo protein design: what are we learning?. Current Opinion in Structural Biology, 1991, 1, 984-993	8.1	57
6	The effect of experimental imperfections on TOSS spectra. <i>Journal of Magnetic Resonance</i> , 1990 , 89, 1-9		1
5	Rotational resonance in solid state NMR. <i>Chemical Physics Letters</i> , 1988 , 146, 71-76	2.5	541
4	Enhancement of the effect of small anisotropies in magic-angle spinning nuclear magnetic resonance. <i>Journal of the Chemical Society Faraday Transactions I</i> , 1988 , 84, 3691		31
3	NMR Studies of Methanogens: What Good Is a Cyclic Pyrophosphate?a. <i>Annals of the New York Academy of Sciences</i> , 1987 , 508, 16-32	6.5	
2	An analysis of sideband suppression techniques in magic-angle sample spinning NMR. <i>Journal of Magnetic Resonance</i> , 1987 , 72, 238-250		8
1	Amyloid Formation1		