
Serenella A Sukno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8735900/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soybean anthracnose caused by <i>Colletotrichum</i> species: Current status and future prospects. Molecular Plant Pathology, 2021, 22, 393-409.	2.0	47
2	Complete Genome Sequence of the plant pathogenic fungus Colletotrichum lupini Molecular Plant-Microbe Interactions, 2021, , MPMI07210173A.	1.4	9
3	Identification and Comparison of Colletotrichum Secreted Effector Candidates Reveal Two Independent Lineages Pathogenic to Soybean. Pathogens, 2021, 10, 1520.	1.2	7
4	Genome Sequence Resources of <i>Colletotrichum truncatum</i> , <i>C. plurivorum</i> , <i>C. musicola</i> , and <i>C. sojae</i> : Four Species Pathogenic to Soybean (<i>Glycine max</i>). Phytopathology, 2020, 110, 1497-1499.	1.1	12
5	Nutritional factors modulating plant and fruit susceptibility to pathogens: BARD workshop, Haifa, Israel, February 25–26, 2018. Phytoparasitica, 2020, 48, 317-333.	0.6	Ο
6	First Report of <i>Colletotrichum graminicola</i> Causing Maize Anthracnose in Bosnia and Herzegovina. Plant Disease, 2019, 103, 3281.	0.7	9
7	Physiological and population genetic analysis of <i>Botrytis</i> field isolates from vineyards in Castilla y León, Spain. Plant Pathology, 2019, 68, 523-536.	1.2	14
8	Whole-Genome Sequence of the Orchid Anthracnose Pathogen <i>Colletotrichum orchidophilum</i> . Molecular Plant-Microbe Interactions, 2018, 31, 979-981.	1.4	21
9	The Colletotrichum acutatum Species Complex as a Model System to Study Evolution and Host Specialization in Plant Pathogens. Frontiers in Microbiology, 2017, 8, 2001.	1.5	61
10	Gene family expansions and contractions are associated with host range in plant pathogens of the genus Colletotrichum. BMC Genomics, 2016, 17, 555.	1.2	151
11	A highly conserved metalloprotease effector enhances virulence in the maize anthracnose fungus <i>Colletotrichum graminicola</i> . Molecular Plant Pathology, 2016, 17, 1048-1062.	2.0	77
12	The FTF gene family regulates virulence and expression of SIX effectors in Fusarium oxysporum. Molecular Plant Pathology, 2016, 17, 1124-1139.	2.0	50
13	A Fungal Effector With Host Nuclear Localization and DNA-Binding Properties Is Required for Maize Anthracnose Development. Molecular Plant-Microbe Interactions, 2016, 29, 83-95.	1.4	58
14	First Report of <i>Colletotrichum graminicola</i> Causing Maize Anthracnose Stalk Rot in the Alentejo Region, Portugal. Plant Disease, 2016, 100, 648-648.	0.7	5
15	Molecular Diversity of Anthracnose Pathogen Populations Associated with UK Strawberry Production Suggests Multiple Introductions of Three Different Colletotrichum Species. PLoS ONE, 2015, 10, e0129140.	1.1	81
16	Identification of horizontally transferred genes in the genus Colletotrichum reveals a steady tempo of bacterial to fungal gene transfer. BMC Genomics, 2015, 16, 2.	1.2	49
17	Draft Genome Sequence of <i>Colletotrichum sublineola</i> , a Destructive Pathogen of Cultivated Sorghum. Genome Announcements, 2014, 2, .	0.8	45
			10 7(50 (0 7

18 Draft Genome Sequence of <i>Colletotrichum acutatum Sensu Lato</i> (<i>Colletotrichum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 To 0.8

Serenella A Sukno

#	Article	IF	CITATIONS
19	Natural Selection on Coding and Noncoding DNA Sequences Is Associated with Virulence Genes in a Plant Pathogenic Fungus. Genome Biology and Evolution, 2014, 6, 2368-2379.	1.1	31
20	First Report of Apple Bitter Rot Caused by <i>Colletotrichum godetiae</i> in the United Kingdom. Plant Disease, 2014, 98, 1000-1000.	0.7	25
21	Global Aspects of pacC Regulation of Pathogenicity Genes in <i>Colletotrichum gloeosporioides</i> as Revealed by Transcriptome Analysis. Molecular Plant-Microbe Interactions, 2013, 26, 1345-1358.	1.4	94
22	New insights into the evolution and structure of <i>Colletotrichum</i> plant-like subtilisins (CPLSs). Communicative and Integrative Biology, 2013, 6, e25727.	0.6	3
23	Horizontal Transfer of a Subtilisin Gene from Plants into an Ancestor of the Plant Pathogenic Fungal Genus Colletotrichum. PLoS ONE, 2013, 8, e59078.	1.1	28
24	Plant Defense Mechanisms Are Activated during Biotrophic and Necrotrophic Development of <i>Colletotricum graminicola</i> in Maize Â. Plant Physiology, 2012, 158, 1342-1358.	2.3	172
25	Identification of positive selection in disease response genes within members of the Poaceae. Plant Signaling and Behavior, 2012, 7, 1667-1675.	1.2	9
26	Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genetics, 2012, 44, 1060-1065.	9.4	840
27	Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biology, 2011, 12, R40.	3.8	594
28	PoGO: Prediction of Gene Ontology terms for fungal proteins. BMC Bioinformatics, 2010, 11, 215.	1.2	14
29	Diagnostic sensitivity and specificity of different methods used by two laboratories for the detection of <i>Phytophthora ramorum</i> on multiple natural hosts. Plant Pathology, 2010, 59, 289-300.	1.2	24
30	Root Infection and Systemic Colonization of Maize by <i>Colletotrichum graminicola</i> . Applied and Environmental Microbiology, 2008, 74, 823-832.	1.4	99
31	Dimerization Controls the Activity of Fungal Elicitors That Trigger Systemic Resistance in Plants. Journal of Biological Chemistry, 2008, 283, 19804-19815.	1.6	102
32	Quantitative Detection of Double-Stranded RNA-Mediated Gene Silencing of Parasitism Genes in Heterodera glycines. Journal of Nematology, 2007, 39, 145-52.	0.4	25
33	Expression and Regulation of the Arabidopsis thaliana Cel1 Endo 1,4 beta Glucanase Gene During Compatible Plant-Nematode Interactions. Journal of Nematology, 2006, 38, 354-61.	0.4	10
34	The promoter of the Arabidopsis thaliana Cel1 endo-1,4-beta glucanase gene is differentially expressed in plant feeding cells induced by root-knot and cyst nematodes. Molecular Plant Pathology, 2004, 5, 175-181.	2.0	44
35	Development of Contamination-Free Restriction Fragment Length Polymorphism Probes for the Obligate Biotroph Peronospora tabacina, an Oomycete Causing Blue Mold of Tobacco. Phytopathology, 2002, 92, 1227-1235.	1.1	7
36	Genetic Uniformity Among Isolates of Peronospora tabacina, the Tobacco Blue Mold Pathogen. Phytopathology, 2002, 92, 1236-1244.	1,1	15

Serenella A Sukno

#	Article	IF	CITATIONS
37	Temperature Effects on the Disease Reactions of Sunflower to Infection by Orobanche cumana. Plant Disease, 2001, 85, 553-556.	0.7	12
38	Inheritance of Resistance to Orobanche <i>cernua</i> Loefl. in Six Sunflower Lines. Crop Science, 1999, 39, 674-678.	0.8	50
39	Title is missing!. Euphytica, 1999, 106, 69-78.	0.6	32
40	Reproductive behaviour and broomrape resistance in interspecific hybrids of sunflower. Plant Breeding, 1998, 117, 279-285.	1.0	17
41	Screening of Wild <i>Helianthus</i> Species and Derived Lines for Resistance to Several Populations of <i>Orobanche cernua</i> . Plant Disease, 1996, 80, 1165.	0.7	29