David Ellard Keith Ferrier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8735387/publications.pdf

Version: 2024-02-01

91 papers 8,545 citations

35 h-index 83 g-index

94 all docs 94 docs citations

94 times ranked 9005 citing authors

#	Article	IF	CITATIONS
1	Evolutionary diversification of the canonical Wnt signaling effector TCF/LEF in chordates. Development Growth and Differentiation, 2022, , .	0.6	4
2	Amphioxus muscle transcriptomes reveal vertebrate-like myoblast fusion genes and a highly conserved role of insulin signalling in the metabolism of muscle. BMC Genomics, 2022, 23, 93.	1.2	1
3	Genome of the ramshorn snail Biomphalaria straminea-an obligate intermediate host of schistosomiasis GigaScience, 2022, 11, .	3.3	11
4	Impacts of jellyfish on marine cage aquaculture: an overview of existing knowledge and the challenges to finfish health. ICES Journal of Marine Science, 2021, 78, 1557-1573.	1.2	17
5	Improved Understanding of the Role of Gene and Genome Duplications in Chordate Evolution With New Genome and Transcriptome Sequences. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	8
6	The Nereid on the rise: Platynereis as a model system. EvoDevo, 2021, 12, 10.	1.3	34
7	Sampling the fish gill microbiome: a comparison of tissue biopsies and swabs. BMC Microbiology, 2021, 21, 313.	1.3	15
8	Gill Transcriptomic Responses to Toxin-producing Alga Prymnesium parvum in Rainbow Trout. Frontiers in Immunology, 2021, 12, 794593.	2.2	2
9	Molecular identification of potential aquaculture pathogens adherent to cnidarian zooplankton. Aquaculture, 2020, 518, 734801.	1.7	9
10	Reconstruction of ancient homeobox gene linkages inferred from a new high-quality assembly of the Hong Kong oyster (Magallana hongkongensis) genome. BMC Genomics, 2020, 21, 713.	1.2	24
11	Micro-RNA Clusters Integrate Evolutionary Constraints on Expression and Target Affinities: The miR-6/5/4/286/3/309 Cluster in Drosophila. Molecular Biology and Evolution, 2020, 37, 2955-2965.	3.5	2
12	More Than One-to-Four via 2R: Evidence of an Independent Amphioxus Expansion and Two-Gene Ancestral Vertebrate State for MyoD-Related Myogenic Regulatory Factors (MRFs). Molecular Biology and Evolution, 2020, 37, 2966-2982.	3.5	15
13	Transcriptional regulation of the Ciona Gsx gene in the neural plate. Developmental Biology, 2019, 448, 88-100.	0.9	5
14	Light-sheet microscopy with attenuation-compensated propagation-invariant beams. Science Advances, 2018, 4, eaar4817.	4.7	76
15	Amphioxus SYCP1: a case of retrogene replacement and co-option of regulatory elements adjacent to the ParaHox cluster. Development Genes and Evolution, 2018, 228, 13-30.	0.4	1
16	Genes for de novo biosynthesis of omega-3 polyunsaturated fatty acids are widespread in animals. Science Advances, 2018, 4, eaar6849.	4.7	252
17	Two more Posterior Hox genes and Hox cluster dispersal in echinoderms. BMC Evolutionary Biology, 2018, 18, 203.	3.2	12
18	Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature, 2018, 564, 64-70.	13.7	224

#	Article	IF	CITATIONS
19	Horizons in evolutionary genomics: an interview with David Ferrier. BMC Biology, 2018, 16, 124.	1.7	O
20	Genome Biology: Unconventional DNA Repair in an Extreme Genome. Current Biology, 2018, 28, R1208-R1210.	1.8	2
21	Recent advances in understanding the roles of whole genome duplications in evolution. F1000Research, 2018, 6, 1623.	0.8	18
22	Pax3/7 duplicated and diverged independently in amphioxus, the basal chordate lineage. Scientific Reports, 2018, 8, 9414.	1.6	7
23	A Revised Spiralian Homeobox Gene Classification Incorporating New Polychaete Transcriptomes Reveals a Diverse TALE Class and a Divergent Hox Gene. Genome Biology and Evolution, 2018, 10, 2151-2167.	1.1	9
24	Recent advances in understanding the roles of whole genome duplications in evolution. F1000Research, 2017, 6, 1623.	0.8	19
25	Evolution of Homeobox Gene Clusters in Animals: The Giga-Cluster and Primary vs. Secondary Clustering. Frontiers in Ecology and Evolution, 2016, 4, .	1.1	40
26	TCF/Lef regulates the Gsx ParaHox gene in central nervous system development in chordates. BMC Evolutionary Biology, 2016, 16, 57.	3.2	9
27	The origin of the Hox/ParaHox genes, the Ghost Locus hypothesis and the complexity of the first animal. Briefings in Functional Genomics, 2016, 15, 333-341.	1.3	22
28	Multimode fibre: Light-sheet microscopy at the tip of a needle. Scientific Reports, 2015, 5, 18050.	1.6	46
29	Airy Beams for Light-sheet Microscopy. Microscopy and Microanalysis, 2015, 21, 1723-1724.	0.2	2
30	Another biomineralising protostome with an <i>msp130</i> gene and conservation of <i>msp130</i> gene structure across Bilateria. Evolution & Development, 2015, 17, 195-197.	1.1	12
31	Macro-optical trapping for sample confinement in light sheet microscopy. Biomedical Optics Express, 2015, 6, 2778.	1.5	19
32	Integrated 3D macro-trapping and light-sheet imaging system. , 2015, , .		0
33	The dynamics of alkaline phosphatase activity during operculum regeneration in the polychaete Pomatoceros lamarckii. International Journal of Developmental Biology, 2014, 58, 635-642.	0.3	6
34	Biomineralisation during operculum regeneration in the polychaete Spirobranchus lamarcki. Marine Biology, 2014, 161, 2621-2629.	0.7	4
35	A compact Airy beam light sheet microscope with a tilted cylindrical lens. Biomedical Optics Express, 2014, 5, 3434.	1.5	78
36	Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes. Nature, 2014, 514, 620-623.	13.7	94

#	Article	IF	Citations
37	The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima. PLoS Biology, 2014, 12, e1002005.	2.6	221
38	Light-sheet microscopy using an Airy beam. Nature Methods, 2014, 11, 541-544.	9.0	679
39	Cell proliferation dynamics in regeneration of the operculum head appendage in the annelid <i>Pomatoceros lamarckii</i> . Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2014, 322, 257-268.	0.6	9
40	The Hox-TALE has been wagging for a long time. ELife, 2014, 3, e02515.	2.8	2
41	Time is of the essence for ParaHox homeobox gene clustering. BMC Biology, 2013, 11, 72.	1.7	15
42	4273Ï€: Bioinformatics education on low cost ARM hardware. BMC Bioinformatics, 2013, 14, 243.	1.2	19
43	Holographic approach for optical poration and trapping of developing embryos. , 2013, , .		O
44	Extensive Chordate and Annelid Macrosynteny Reveals Ancestral Homeobox Gene Organization. Molecular Biology and Evolution, 2012, 29, 157-165.	3.5	53
45	Mechanisms of Gene Duplication and Translocation and Progress towards Understanding Their Relative Contributions to Animal Genome Evolution. International Journal of Evolutionary Biology, 2012, 2012, 1-10.	1.0	29
46	A multimodal holographic system for optical manipulation and injection of developing embryos. , 2012,		0
47	Ghost Loci Imply Hox and ParaHox Existence in the Last Common Ancestor of Animals. Current Biology, 2012, 22, 1951-1956.	1.8	48
48	Evolution of signal multiplexing by $14-3-3$ -binding $2R$ -ohnologue protein families in the vertebrates. Open Biology, 2012 , 2 , 120103 .	1.5	47
49	Evolutionary crossroads in developmental biology: annelids. Development (Cambridge), 2012, 139, 2643-2653.	1.2	25
50	Integrated holographic system for all-optical manipulation of developing embryos. Biomedical Optics Express, 2011, 2, 1564.	1.5	29
51	Hox and ParaHox Genes in Evolution, Development and Genomics. Genomics, Proteomics and Bioinformatics, 2011, 9, 63-64.	3.0	O
52	Tunicates push the limits of animal evo-devo. BMC Biology, 2011, 9, 3.	1.7	9
53	Annelid Distal-less/Dlx duplications reveal varied post-duplication fates. BMC Evolutionary Biology, 2011, 11, 241.	3.2	16
54	Ancient homeobox gene loss and the evolution of chordate brain and pharynx development: deductions from amphioxus gene expression. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3381-3389.	1.2	11

#	Article	IF	Citations
55	Genome Sequence of the Pea Aphid Acyrthosiphon pisum. PLoS Biology, 2010, 8, e1000313.	2.6	913
56	Chordate Hox and ParaHox Gene Clusters Differ Dramatically in Their Repetitive Element Content. Molecular Biology and Evolution, 2010, 27, 217-220.	3.5	8
57	Evolutionary Developmental Genomics: At the 2008 meeting of the European Society for Evolutionary Developmental Biology. Genomics, 2010, 95, 247-249.	1.3	1
58	Evolution of Hox Complexes. Advances in Experimental Medicine and Biology, 2010, 689, 91-100.	0.8	13
59	An EST screen from the annelid Pomatoceros lamarckii reveals patterns of gene loss and gain in animals. BMC Evolutionary Biology, 2009, 9, 240.	3.2	40
60	Features of the ancestral bilaterian inferred from Platynereis dumerilii ParaHox genes. BMC Biology, 2009, 7, 43.	1.7	58
61	Differential regulation of ParaHox genes by retinoic acid in the invertebrate chordate amphioxus (Branchiostoma floridae). Developmental Biology, 2009, 327, 252-262.	0.9	33
62	11-P006 Ancient animal homeobox genes, in a novel chordate context. Mechanisms of Development, 2009, 126, S185-S186.	1.7	0
63	15-P003 An EST screen from the annelid Pomatoceros lamarckii reveals patterns of gene loss and gain in animals. Mechanisms of Development, 2009, 126, S247-S248.	1.7	1
64	Comprehensive survey and classification of homeobox genes in the genome of amphioxus, Branchiostoma floridae. Development Genes and Evolution, 2008, 218, 579-590.	0.4	69
65	The amphioxus <i>Hox</i> cluster: characterization, comparative genomics, and evolution. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2008, 310B, 465-477.	0.6	50
66	The genome of the model beetle and pest Tribolium castaneum. Nature, 2008, 452, 949-955.	13.7	1,255
67	The amphioxus genome and the evolution of the chordate karyotype. Nature, 2008, 453, 1064-1071.	13.7	1,496
68	Do cnidarians have a ParaHox cluster? Analysis of synteny around a <i>Nematostella</i> homeobox gene cluster. Evolution & Development, 2008, 10, 725-730.	1.1	33
69	The Urbilaterian Super-Hox cluster. Trends in Genetics, 2008, 24, 259-262.	2.9	43
70	The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Research, 2008, 18, 1100-1111.	2.4	456
71	Annelids in evolutionary developmental biology and comparative genomics. Parasite, 2008, 15, 321-328.	0.8	7
72	When is a Hox gene not a Hox gene? The importance of gene nomenclature. , 2008, , 175-193.		6

#	Article	IF	Citations
73	Duplication of the ribosomal gene cluster in the marine polychaete Platynereis dumerilii correlates with ITS polymorphism. Journal of the Marine Biological Association of the United Kingdom, 2007, 87, 443-449.	0.4	11
74	Molecular Architecture of Annelid Nerve Cord Supports Common Origin of Nervous System Centralization in Bilateria. Cell, 2007, 129, 277-288.	13.5	406
75	Evolution of Hox Gene Clusters. , 2007, , 53-67.		8
76	Hox genes are not always Colinear. International Journal of Biological Sciences, 2006, 2, 95-103.	2.6	79
77	The development of the larval nervous system, musculature and ciliary bands of Pomatoceros lamarckii (Annelida): heterochrony in polychaetes. Frontiers in Zoology, 2006, 3, 16.	0.9	81
78	Identification and Characterisation of five novel Miniature Inverted-repeat Transposable Elements (MITEs) in amphioxus (<i>Branchiostoma floridae</i>). International Journal of Biological Sciences, 2006, 2, 54-60.	2.6	16
79	The chordate ParaHox cluster. Current Biology, 2005, 15, R820-R822.	1.8	45
80	Vertebrate-Type Intron-Rich Genes in the Marine Annelid Platynereis dumerilii. Science, 2005, 310, 1325-1326.	6.0	244
81	Hox Genes: Did the Vertebrate Ancestor Have a Hox14?. Current Biology, 2004, 14, R210-R211.	1.8	15
82	Evolution of the Hox/ParaHox gene clusters. International Journal of Developmental Biology, 2003, 47, 605-11.	0.3	78
83	Gene duplications in the prototypical cephalochordate amphioxus. Gene, 2002, 287, 121-128.	1.0	38
84	Ciona intestinalis ParaHox genes: evolution of Hox/ParaHox cluster integrity, developmental mode, and temporal colinearity. Molecular Phylogenetics and Evolution, 2002, 24, 412-417.	1.2	92
85	Amphioxus Evx Genes: Implications for the Evolution of the Midbrain–Hindbrain Boundary and the Chordate Tailbud. Developmental Biology, 2001, 237, 270-281.	0.9	55
86	The Mnx homeobox gene class defined by HB9, MNR2 and amphioxus AmphiMnx. Development Genes and Evolution, 2001, 211, 103-107.	0.4	54
87	Sipunculan ParaHox genes. Evolution & Development, 2001, 3, 263-270.	1.1	47
88	Ancient origin of the Hox gene cluster. Nature Reviews Genetics, 2001, 2, 33-38.	7.7	233
89	The amphioxus Hox cluster: deuterostome posterior flexibility and Hox 14. Evolution & Development, 2000, 2, 284-293.	1.1	156
90	Diversification of arthropod Hox genes as a paradigm for the evolution of gene functions. Seminars in Cell and Developmental Biology, 1996, 7, 539-551.	2.3	45

#	Article	IF	CITATIONS
91	Organization of the Hox gene cluster in the grasshopper, Schistocerca gregaria. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 13024-13029.	3.3	47