Jason M E Ahad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8734798/publications.pdf

Version: 2024-02-01

279487 264894 1,917 42 23 42 citations h-index g-index papers 53 53 53 1772 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ten Year Performance Evaluation of a Field-Scale Zero-Valent Iron Permeable Reactive Barrier Installed to Remediate Trichloroethene Contaminated Groundwater. Environmental Science & Environmental Sc	4.6	194
2	Contrasting carbon isotope fractionation during biodegradation of trichloroethylene and toluene: Implications for intrinsic bioremediation. Organic Geochemistry, 1999, 30, 813-820.	0.9	164
3	Headspace Analysis:Â A New Application for Isotopic Characterization of Dissolved Organic Contaminants. Environmental Science & Environmental Science	4.6	155
4	Carbon Isotope Effects Resulting from Equilibrium Sorption of Dissolved VOCs. Analytical Chemistry, 2000, 72, 5669-5672.	3.2	128
5	Carbon Isotope Fractionation during Anaerobic Biodegradation of Toluene:Â Implications for Intrinsic Bioremediation. Environmental Science & Environme	4.6	107
6	Century-Long Source Apportionment of PAHs in Athabasca Oil Sands Region Lakes Using Diagnostic Ratios and Compound-Specific Carbon Isotope Signatures. Environmental Science &	4.6	98
7	Discriminatory classification of natural and anthropogenic waters in two U.K. estuaries. Science of the Total Environment, 2007, 373, 305-323.	3.9	82
8	The estuarine mixing behaviour of peatland derived dissolved organic carbon and its relationship to chromophoric dissolved organic matter in two North Sea estuaries (U.K.). Estuarine, Coastal and Shelf Science, 2007, 74, 131-144.	0.9	74
9	Hydrogen Isotope Fractionation during Methanogenic Degradation of Toluene:Â Potential for Direct Verification of Bioremediation. Environmental Science & Eamp; Technology, 2000, 34, 4577-4581.	4.6	73
10	Sources of polycyclic aromatic hydrocarbons (PAHs) to northwestern Saskatchewan lakes east of the Athabasca oil sands. Organic Geochemistry, 2015, 80, 35-45.	0.9	67
11	Characterization and Quantification of Mining-Related "Naphthenic Acids―in Groundwater near a Major Oil Sands Tailings Pond. Environmental Science & Technology, 2013, 47, 5023-5030.	4.6	60
12	Air synthesis review: polycyclic aromatic compounds in the oil sands region. Environmental Reviews, 2018, 26, 430-468.	2.1	58
13	The Utica Shale and gas play in southern Quebec: Geological and hydrogeological syntheses and methodological approaches to groundwater risk evaluation. International Journal of Coal Geology, 2014, 126, 77-91.	1.9	56
14	Isotopic Evidence for Oil Sands Petroleum Coke in the Peace–Athabasca Delta. Environmental Science & Environmental	4.6	47
15	Advances in Distinguishing Groundwater Influenced by Oil Sands Process-Affected Water (OSPW) from Natural Bitumen-Influenced Groundwaters. Environmental Science & Environment	4.6	45
16	Sources of n-alkanes in an urbanized estuary: Insights from molecular distributions and compound-specific stable and radiocarbon isotopes. Marine Chemistry, 2011, 126, 239-249.	0.9	44
17	Source Apportionment of Background PAHs in the Peace-Athabasca Delta (Alberta, Canada) Using Molecular Level Radiocarbon Analysis. Environmental Science & Eamp; Technology, 2015, 49, 9056-9063.	4.6	38
18	Manifestation of an Enhanced Photoreduction of CO ₂ to CO over the ⟨i>In Situ⟨/i>Synthesized rGO–Covalent Organic Framework under Visible Light Irradiation. ACS Applied Energy Materials, 2021, 4, 6005-6014.	2.5	30

#	Article	IF	CITATIONS
19	Controls on carbon cycling in two contrasting temperate zone estuaries: The Tyne and Tweed, UK. Estuarine, Coastal and Shelf Science, 2008, 78, 685-693.	0.9	29
20	Evaluating the sources and fate of anthropogenic dissolved inorganic nitrogen (DIN) in two contrasting North Sea estuaries. Science of the Total Environment, 2006, 372, 317-333.	3.9	27
21	Polycyclic aromatic compounds (PACs) in the Canadian environment: A review of sampling techniques, strategies and instrumentation. Environmental Pollution, 2020, 266, 114988.	3.7	26
22	Extraction, Separation, and Intramolecular Carbon Isotope Characterization of Athabasca Oil Sands Acids in Environmental Samples. Analytical Chemistry, 2012, 84, 10419-10425.	3.2	25
23	Paleolimnological assessment of limnological change in 10 lakes from northwest Saskatchewan downwind of the Athabasca oils sands based on analysis of siliceous algae and trace metals in sediment cores. Hydrobiologia, 2013, 720, 55-73.	1.0	25
24	Evaluating in situ biodegradation of 13C-labelled naphthenic acids in groundwater near oil sands tailings ponds. Science of the Total Environment, 2018, 643, 392-399.	3.9	24
25	Distinguishing Natural from Anthropogenic Sources of Acid Extractable Organics in Groundwater near Oil Sands Tailings Ponds. Environmental Science & E	4.6	23
26	Assessing Microbial Uptake of Petroleum Hydrocarbons in Groundwater Systems Using Natural Abundance Radiocarbon. Environmental Science & Environmental	4.6	19
27	Lake-sediment record of PAH, mercury, and fly-ash particle deposition near coal-fired power plants in Central Alberta, Canada. Environmental Pollution, 2017, 231, 644-653.	3.7	18
28	Evaporative emissions from tailings ponds are not likely an important source of airborne PAHs in the Athabasca oil sands region. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2439.	3.3	17
29	Evidence for anthropogenic 14C-enrichment in estuarine waters adjacent to the North Sea. Geophysical Research Letters, 2006, 33, .	1.5	16
30	Isotopic Analyses Fingerprint Sources of Polycyclic Aromatic Compound-Bearing Dust in Athabasca Oil Sands Region Snowpack. Environmental Science & Environmental Science & 2021, 55, 5887-5897.	4.6	16
31	Carbon isotope effects associated with Fenton-like degradation of toluene: Potential for differentiation of abiotic and biotic degradation. Science of the Total Environment, 2008, 401, 194-198.	3.9	15
32	Characterization of the boron, lithium, and strontium isotopic variations of oil sands process-affected water in Alberta, Canada. Applied Geochemistry, 2018, 90, 50-62.	1.4	13
33	Direct Evaluation of in Situ Biodegradation in Athabasca Oil Sands Tailings Ponds Using Natural Abundance Radiocarbon. Environmental Science & Environ	4.6	11
34	Assessing potential impacts of shale gas development on shallow aquifers through upward fluid migration: A multi-disciplinary approach applied to the Utica Shale in eastern Canada. Marine and Petroleum Geology, 2019, 100, 466-483.	1.5	10
35	Quantification of Spatial and Temporal Trends in Atmospheric Mercury Deposition across Canada over the Past 30 Years. Environmental Science & Environm	4.6	10
36	Understanding shallow and deep flow for assessing the risk of hydrocarbon development to groundwater quality. Marine and Petroleum Geology, 2016, 78, 728-737.	1.5	9

#	Article	IF	CITATIONS
37	Modern sediment records of hydroclimatic extremes and associated potential contaminant mobilization in semi-arid environments: lessons learnt from recent flood-drought cycles in southern Botswana. Journal of Soils and Sediments, 2020, 20, 1632-1650.	1.5	9
38	Using tree cores to evaluate historic atmospheric concentrations and trends of polycyclic aromatic compounds in the Oil Sands region of Alberta, Canada. Science of the Total Environment, 2020, 739, 139996.	3.9	9
39	A multi-isotope approach to determine the origin of methane and higher alkanes in groundwater of the St. Lawrence Platform, Saint-Édouard area, eastern Canada. Environmental Geosciences, 2018, 25, 75-100.	0.6	8
40	Naphthenic acids in groundwater overlying undeveloped shale gas and tight oil reservoirs. Chemosphere, 2018, 191, 664-672.	4.2	6
41	Molecular and isotopic evaluation of the maturation history of the organic matter in an Ordovician aquiclude (Michigan Basin): Evidence for late diagenetic biodegradation. Organic Geochemistry, 2018, 125, 129-141.	0.9	5
42	Advances in science and applications in air pollution monitoring: A case study on oil sands monitoring targeting ecosystem protection. Journal of the Air and Waste Management Association, 2019, 69, 1133-1141.	0.9	2