Damien Montarnal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8734774/publications.pdf

Version: 2024-02-01

34 papers 5,116 citations

304602 22 h-index 345118 36 g-index

37 all docs

37 docs citations

37 times ranked

3847 citing authors

#	Article	IF	CITATIONS
1	Tuning the Viscosity Profiles of High- $\langle i > T < i > c \le sub > g < sub > Poly(1,2,3-triazolium)$ Covalent Adaptable Networks by the Chemical Structure of the N-Substituents. Macromolecules, 2021, 54, 3281-3292.	2.2	33
2	Porous functionalized polymers enable generating and transporting hyperpolarized mixtures of metabolites. Nature Communications, 2021, 12, 4695.	5.8	23
3	Hydrolyzable Biobased Polyhydroxyurethane Networks with Shape Memory Behavior at Body Temperature. ACS Sustainable Chemistry and Engineering, 2020, 8, 9125-9135.	3.2	27
4	One-pot syntheses of heterotelechelic α-vinyl,ω-methoxysilane polyethylenes and condensation into comb-like and star-like polymers with high chain end functionality. Polymer Chemistry, 2020, 11, 3884-3891.	1.9	11
5	Rheological Properties of Covalent Adaptable Networks with 1,2,3-Triazolium Cross-Links: The Missing Link between Vitrimers and Dissociative Networks. Macromolecules, 2020, 53, 1884-1900.	2.2	131
6	Evidence for a narrow band gap phase in 1T′ WS2 nanosheet. Applied Physics Letters, 2019, 115, .	1.5	25
7	Polyethylene Aerogels with Combined Physical and Chemical Crosslinking: Improved Mechanical Resilience and Shapeâ€Memory Properties. Angewandte Chemie - International Edition, 2019, 58, 15883-15889.	7.2	24
8	Polyethylene Aerogels with Combined Physical and Chemical Crosslinking: Improved Mechanical Resilience and Shapeâ€Memory Properties. Angewandte Chemie, 2019, 131, 16030-16036.	1.6	3
9	High Glassâ€Transition Temperature Polymer Networks Harnessing the Dynamic Ring Opening of Pinacol Boronates. Angewandte Chemie, 2019, 131, 12344-12350.	1.6	1
10	High Glassâ€Transition Temperature Polymer Networks Harnessing the Dynamic Ring Opening of Pinacol Boronates. Angewandte Chemie - International Edition, 2019, 58, 12216-12222.	7.2	24
11	Improved malleability of miniemulsion-based vitrimers through <i>in situ</i> generation of carboxylate surfactants. Polymer Chemistry, 2019, 10, 3001-3005.	1.9	10
12	Vitrimer Chemistry Meets Cellulose Nanofibrils: Bioinspired Nanopapers with High Water Resistance and Strong Adhesion. Biomacromolecules, 2019, 20, 1045-1055.	2.6	77
13	Formation of Cross-Linked Films from Immiscible Precursors through Sintering of Vitrimer Nanoparticles. ACS Macro Letters, 2018, 7, 376-380.	2.3	43
14	Tuning the Viscosity Profile of Ionic Vitrimers Incorporating 1,2,3â€Triazolium Crossâ€Links. Advanced Functional Materials, 2017, 27, 1703258.	7.8	153
15	Improved selfâ€assembly of poly(dimethylsiloxaneâ€ <i>b</i> â€ethylene oxide) using a hydrogenâ€bonding additive. Journal of Polymer Science Part A, 2016, 54, 2200-2208.	2.5	17
16	Recodable surfaces based on switchable hydrogen bonds. Chemical Communications, 2016, 52, 8753-8756.	2.2	6
17	Highly Ordered Nanoporous Films from Supramolecular Diblock Copolymers with Hydrogenâ€Bonding Junctions. Angewandte Chemie - International Edition, 2015, 54, 11117-11121.	7.2	43
18	Poly(dimethylsiloxane- <i>b</i> -methyl methacrylate): A Promising Candidate for Sub-10 nm Patterning. Macromolecules, 2015, 48, 3422-3430.	2.2	121

#	Article	IF	CITATIONS
19	Reprocessing and Recycling of Highly Cross-Linked Ion-Conducting Networks through Transalkylation Exchanges of C–N Bonds. Journal of the American Chemical Society, 2015, 137, 6078-6083.	6.6	407
20	Expanding the structural variety of poly $(1,2,3$ -triazolium)s obtained by simultaneous $1,3$ -dipolar Huisgen polyaddition and N-alkylation. Polymer, $2015, 79, 309-315$.	1.8	22
21	Enhanced Block Copolymer Phase Separation Using Click Chemistry and Ionic Junctions. ACS Macro Letters, 2015, 4, 1332-1336.	2.3	42
22	Revisiting thiolâ€yne chemistry: Selective and efficient monoaddition for block and graft copolymer formation. Journal of Polymer Science Part A, 2015, 53, 319-326.	2.5	18
23	Accelerated Solvent―and Catalystâ€Free Synthesis of 1,2,3â€Triazoliumâ€Based Poly(Ionic Liquid)s. Macromolecular Rapid Communications, 2014, 35, 794-800.	2.0	46
24	UV-Patterning of Ion Conducting Negative Tone Photoresists Using Azide-Functionalized Poly(Ionic) Tj ETQq0 0	0 rgBT /Ο\	verlock 10 Tf
25	Toward Strong Thermoplastic Elastomers with Asymmetric Miktoarm Block Copolymer Architectures. Macromolecules, 2014, 47, 2037-2043.	2.2	69
26	Synthesis and Photophysics of Coaxial Threaded Molecular Wires: Polyrotaxanes with Triarylamine Jackets. Journal of Physical Chemistry C, 2014, 118, 4553-4566.	1.5	21
27	A One-Step Strategy for End-Functionalized Donor–Acceptor Conjugated Polymers. Macromolecules, 2013, 46, 6431-6438.	2.2	49
28	Metal-Catalyzed Transesterification for Healing and Assembling of Thermosets. Journal of the American Chemical Society, 2012, 134, 7664-7667.	6.6	875
29	Activation and deactivation of self-healing in supramolecular rubbers. Soft Matter, 2012, 8, 1681-1687.	1.2	93
30	Silica-Like Malleable Materials from Permanent Organic Networks. Science, 2011, 334, 965-968.	6.0	2,198
31	Epoxyâ€based networks combining chemical and supramolecular hydrogenâ€bonding crosslinks. Journal of Polymer Science Part A, 2010, 48, 1133-1141.	2.5	73
32	Selfâ∈Healing Supramolecular Networks. Macromolecular Symposia, 2010, 291-292, 84-88.	0.4	43
33	Versatile One-Pot Synthesis of Supramolecular Plastics and Self-Healing Rubbers. Journal of the American Chemical Society, 2009, 131, 7966-7967.	6.6	219
34	Synthesis of selfâ€healing supramolecular rubbers from fatty acid derivatives, diethylene triamine, and urea. Journal of Polymer Science Part A, 2008, 46, 7925-7936.	2.5	139