Pedro E. Gundel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8734629/publications.pdf

Version: 2024-02-01

96 papers 3,152 citations

168829 31 h-index 51 g-index

100 all docs

100 docs citations

100 times ranked 2661 citing authors

#	Article	IF	CITATIONS
1	Ecotypeâ€specific effects of fungal endophytes on germination responses of seeds of the South American wild forage grass <scp><i>Bromus auleticus</i></scp> . Annals of Applied Biology, 2022, 180, 247-258.	1.3	5
2	Loss of fungal symbionts at the arid limit of the distribution range in a native Patagonian grassâ€"Resource ecoâ€physiological relations. Functional Ecology, 2022, 36, 583-594.	1.7	7
3	Global urban environmental change drives adaptation in white clover. Science, 2022, 375, 1275-1281.	6.0	62
4	Hardening Blueberry Plants to Face Drought and Cold Events by the Application of Fungal Endophytes. Agronomy, 2022, 12, 1000.	1.3	10
5	How and when fungal endophytes can eliminate the plant growth–defence tradeâ€off: mechanistic perspectives. New Phytologist, 2022, 235, 388-390.	3.5	O
6	Episodes of high tropospheric ozone reduce nodulation, seed production and quality in soybean (Glycine max (L.) merr.) on low fertility soils. Environmental Pollution, 2021, 269, 116117.	3.7	10
7	A fungal endophyte of an annual weed reduces host competitive ability and confers associational protection to wheat. Basic and Applied Ecology, 2021, 50, 16-24.	1.2	O
8	Diversity, Ecology, and Applications of Epichloë Fungal Endophytes of Grasses in South America. , 2021, , 11-36.		O
9	Getting ready for the ozone battle: Vertically transmitted fungal endophytes have transgenerational positive effects in plants. Plant, Cell and Environment, 2021, 44, 2716-2728.	2.8	16
10	A Systematic Review on the Effects of Epichlo \tilde{A} « Fungal Endophytes on Drought Tolerance in Cool-Season Grasses. Frontiers in Plant Science, 2021, 12, 644731.	1.7	29
11	Fungal endophytes can eliminate the plant growth–defence tradeâ€off. New Phytologist, 2021, 230, 2105-2113.	3.5	47
12	Can seed-borne endophytes promote grass invasion by reducing host dependence on mycorrhizas?. Fungal Ecology, 2021, 52, 101077.	0.7	6
13	Seed-borne fungal endophytes constrain reproductive success of host plants under ozone pollution. Environmental Research, 2021, 202, 111773.	3.7	10
14	Molecular and structural characterization of expansins modulated by fungal endophytes in the Antarctic Colobanthus quitensis (Kunth) Bartl. Exposed to drought stress. Plant Physiology and Biochemistry, 2021, 168, 465-476.	2.8	7
15	Epichloë Fungal Endophytes Influence Seed-Associated Bacterial Communities. Frontiers in Microbiology, 2021, 12, 795354.	1.5	10
16	Protection offered by leaf fungal endophytes to an invasive species against native herbivores depends on soil nutrients. Journal of Ecology, 2020, 108, 1592-1604.	1.9	17
17	An ecological framework for understanding the roles of Epichloë endophytes on plant defenses against fungal diseases. Fungal Biology Reviews, 2020, 34, 115-125.	1.9	31
18	Ontogenetic and transâ€generational dynamics of a vertically transmitted fungal symbiont in an annual host plant in ozoneâ€polluted settings. Plant, Cell and Environment, 2020, 43, 2540-2550.	2.8	15

#	Article	IF	CITATIONS
19	Maternal Exposure to Ozone Modulates the Endophyte-Conferred Resistance to Aphids in Lolium multiflorum Plants. Insects, 2020, 11, 548.	1.0	9
20	Fungal Endophytes Enhance the Photoprotective Mechanisms and Photochemical Efficiency in the Antarctic Colobanthus quitensis (Kunth) Bartl. Exposed to UV-B Radiation. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	24
21	Fungal Endophytes Exert Positive Effects on Colobanthus quitensis Under Water Stress but Neutral Under a Projected Climate Change Scenario in Antarctica. Frontiers in Microbiology, 2020, 11, 264.	1.5	56
22	Simulated folivory increases vertical transmission of fungal endophytes that deter herbivores and alter tolerance to herbivory in <i>Poa autumnalis</i> . Annals of Botany, 2020, 125, 981-991.	1.4	10
23	Antarctic root endophytes improve physiological performance and yield in crops under salt stress by enhanced energy production and Na+ sequestration. Scientific Reports, 2020, 10, 5819.	1.6	54
24	Functional roles of microbial symbionts in plant cold tolerance. Ecology Letters, 2020, 23, 1034-1048.	3.0	79
25	The negative effect of a vertically-transmitted fungal endophyte on seed longevity is stronger than that of ozone transgenerational effect. Environmental and Experimental Botany, 2020, 175, 104037.	2.0	8
26	<i>Sipha maydis</i> sensitivity to defences of <i>Lolium multiflorum</i> and its endophytic fungus <i>Epichloë</i> occultans. PeerJ, 2019, 7, e8257.	0.9	9
27	The role of plant size in the selection of glyphosate resistance in <scp><i>Sorghum halepense</i></scp> . Pest Management Science, 2018, 74, 2460-2467.	1.7	7
28	Jasmonic acid regulation of the antiâ€herbivory mechanism conferred by fungal endophytes in grasses. Journal of Ecology, 2018, 106, 2365-2379.	1.9	23
29	The plant hormone salicylic acid interacts with the mechanism of antiâ€herbivory conferred by fungal endophytes in grasses. Plant, Cell and Environment, 2018, 41, 395-405.	2.8	52
30	A fungal endophyte of a palatable grass affects preference of large herbivores. Austral Ecology, 2018, 43, 172-179.	0.7	7
31	Occurrence of Alkaloids in Grass Seeds Symbiotic With Vertically-Transmitted Epichlo $ ilde{A}$ « Fungal Endophytes and Its Relationship With Antioxidants. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	22
32	Vertically transmitted symbionts as mechanisms of transgenerational effects. American Journal of Botany, 2017, 104, 787-792.	0.8	44
33	Symbiosis with systemic fungal endophytes promotes host escape from vector-borne disease. Oecologia, 2017, 184, 237-245.	0.9	18
34	Epichloë Fungal Endophytes and Plant Defenses: Not Just Alkaloids. Trends in Plant Science, 2017, 22, 939-948.	4.3	162
35	Metabolism or behavior: explaining the performance of aphids on alkaloid-producing fungal endophytes in annual ryegrass (Lolium multiflorum). Oecologia, 2017, 185, 245-256.	0.9	22
36	Assessing the impacts of intra- and interspecific competition between <i>Triticum aestivum </i> aestivum aestivum ozone. Botany, 2017, 95, 923-932.	0.5	13

#	Article	IF	CITATIONS
37	Direct and indirect effects of the fungal endophyte Epichlo $ ilde{A}$ « uncinatum on litter decomposition of the host grass, Schedonorus pratensis. Plant Ecology, 2017, 218, 1107-1115.	0.7	16
38	Legacy of historic ozone exposure on plant community and food web structure. PLoS ONE, 2017, 12, e0182796.	1.1	4
39	The enhancement of invasion ability of an annual grass by its fungal endophyte depends on recipient community structure. Biological Invasions, 2016, 18, 1853-1865.	1.2	5
40	Role of foliar fungal endophytes in litter decomposition among species and population origins. Fungal Ecology, 2016, 21, 50-56.	0.7	15
41	Mutualism effectiveness of a fungal endophyte in an annual grass is impaired by ozone. Functional Ecology, 2016, 30, 226-234.	1.7	29
42	Data on litter quality of host grass plants with and without fungal endophytes. Data in Brief, 2016, 7, 1469-1472.	0.5	1
43	Inferring field performance from drought experiments can be misleading: The case of symbiosis between grasses and Epichloī fungal endophytes. Journal of Arid Environments, 2016, 132, 60-62.	1.2	19
44	Can the defensive mutualism between grasses and fungal endophytes protect non-symbiotic neighbours from soil pathogens?. Plant and Soil, 2016, 405, 289-298.	1.8	20
45	Geographic Variation in Festuca rubra L. Ploidy Levels and Systemic Fungal Endophyte Frequencies. PLoS ONE, 2016, 11, e0166264.	1.1	12
46	Occurrence of Epichloë fungal endophytes in the sheep-preferred grass Hordeum comosum from Patagonia. Journal of Arid Environments, 2015, 115, 19-26.	1.2	15
47	Impact of ozone on the viability and antioxidant content of grass seeds is affected by a vertically transmitted symbiotic fungus. Environmental and Experimental Botany, 2015, 113, 40-46.	2.0	18
48	Experimental Methods for Estimation of Plant Fitness Costs Associated with Herbicide-Resistance Genes. Weed Science, 2015, 63, 203-216.	0.8	75
49	Effects of systemic fungal endophytes on the performance of meadow fescue and tall fescue in mixtures with red clover. Grass and Forage Science, 2015, 70, 465-473.	1.2	13
50	Broadâ€scale variation of fungalâ€endophyte incidence in temperate grasses. Journal of Ecology, 2015, 103, 184-190.	1.9	32
51	Epichloë Endophytes Alter Inducible Indirect Defences in Host Grasses. PLoS ONE, 2014, 9, e101331.	1.1	33
52	Germination response of endophytic <i>Festuca rubra</i> seeds in the presence of arsenic. Grass and Forage Science, 2014, 69, 462-469.	1.2	20
53	Systemic fungal endophytes and ploidy level in Festuca vivipara populations in North European Islands. Plant Systematics and Evolution, 2014, 300, 1683-1691.	0.3	2
54	Fungal endophyte mediated occurrence of seminiferous and pseudoviviparous panicles in Festuca rubra. Fungal Diversity, 2014, 66, 69-76.	4.7	0

#	Article	IF	CITATIONS
55	Competing neighbors: light perception and root function. Oecologia, 2014, 176, 1-10.	0.9	91
56	Non-systemic fungal endophytes in Festuca rubra plants infected by Epichloë festucae in subarctic habitats. Fungal Diversity, 2013, 60, 25-32.	4.7	31
57	Fungal endophytes help prevent weed invasions. Agriculture, Ecosystems and Environment, 2013, 165, 1-5.	2.5	54
58	Glyphosate resistance in <i>Sorghum halepense</i> and <i>Lolium rigidum</i> is reduced at suboptimal growing temperatures. Pest Management Science, 2013, 69, 228-232.	1.7	52
59	Family issues: fungal endophyte protects host grass from the closely related pathogen Claviceps purpurea. Fungal Ecology, 2013, 6, 379-386.	0.7	35
60	Symbiotic interactions as drivers of trade-offs in plants: effects of fungal endophytes on tall fescue. Fungal Diversity, 2013, 60, 5-14.	4.7	17
61	Neotyphodium fungal endophyte in tall fescue (Schedonorus phoenix): a comparison of three Northern European wild populations and the cultivar Kentucky-31. Fungal Diversity, 2013, 60, 15-24.	4.7	22
62	Symbiotically modified organisms: nontoxic fungal endophytes in grasses. Trends in Plant Science, 2013, 18, 420-427.	4.3	72
63	Chemical Ecology Mediated by Fungal Endophytes in Grasses. Journal of Chemical Ecology, 2013, 39, 962-968.	0.9	165
64	Ozone Exposure of a Weed Community Produces Adaptive Changes in Seed Populations of Spergula arvensis. PLoS ONE, 2013, 8, e75820.	1.1	11
65	Threshold modelling Lolium multiflorum seed germination: effects of Neotyphodium endophyte infection and storage environment. Seed Science and Technology, 2012, 40, 51-62.	0.6	9
66	Antioxidants in Festuca rubra L. seeds affected by the fungal symbiont Epichloë festucae. Symbiosis, 2012, 58, 73-80.	1.2	14
67	Climate change-driven species' range shifts filtered by photoperiodism. Nature Climate Change, 2012, 2, 239-242.	8.1	132
68	Germination requirements of two sheep-preferred grasses (Hordeum comosum and Koeleria) Tj ETQq0 0 0 rgBT /078, 183-186.	Overlock 1 1.2	0 Tf 50 227 5
69	Grass–endophyte symbiosis: A neglected aboveground interaction with multiple belowground consequences. Applied Soil Ecology, 2012, 61, 273-279.	2.1	85
70	Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Diversity, 2012, 54, 1-10.	4.7	251
71	Consequences of grazing on the vertical transmission of a fungal <i>Neotyphodium</i> symbiont in an annual grass population. Austral Ecology, 2012, 37, 620-628.	0.7	20
72	Trade-off between seed number and weight: Influence of a grass–endophyte symbiosis. Basic and Applied Ecology, 2012, 13, 32-39.	1.2	19

#	Article	IF	Citations
73	Mutualism effectiveness and vertical transmission of symbiotic fungal endophytes in response to host genetic background. Evolutionary Applications, 2012, 5, 838-849.	1.5	62
74	Interaction between plant genotype and the symbiosis with Epichlo \tilde{A} « fungal endophytes in seeds of red fescue (Festuca rubra). Crop and Pasture Science, 2011, 62, 1010.	0.7	14
75	Incorporating the process of vertical transmission into understanding of host–symbiont dynamics. Oikos, 2011, 120, 1121-1128.	1.2	102
76	Neotyphodium endophyte transmission to Lolium multiflorum seeds depends on the host plant fitness. Environmental and Experimental Botany, 2011, 71, 359-359.	2.0	33
77	Forage production in natural and afforested grasslands of the Pampas: ecological complementarity and management opportunities. Agroforestry Systems, 2011, 83, 201-211.	0.9	12
78	Limits to recruitment of tall fescue plants in poplar silvopastoral systems of the Pampas, Argentina. Agroforestry Systems, 2010, 80, 275-282.	0.9	6
79	The interplay between the effectiveness of the grassâ€endophyte mutualism and the genetic variability of the host plant. Evolutionary Applications, 2010, 3, 538-546.	1.5	37
80	Dynamics of <i>Neotyphodium</i> endophyte infection in ageing seed pools: incidence of differential viability loss of endophyte, infected seed and nonâ€infected seed. Annals of Applied Biology, 2010, 156, 199-209.	1.3	26
81	Searching for Evidence against the Mutualistic Nature of Hereditary Symbioses: A Comment on Faeth. American Naturalist, 2010, 176, 99-103.	1.0	18
82	Imperfect Vertical Transmission of the Endophyte Neotyphodium in Exotic Grasses in Grasslands of the Flooding Pampa. Microbial Ecology, 2009, 57, 740-748.	1.4	62
83	Viability of <i>Neotyphodium</i> endophytic fungus and endophyte-infected and noninfected <i>Lolium multiflorum</i> seeds. Botany, 2009, 87, 88-96.	0.5	28
84	Glyphosateâ€resistant weeds of South American cropping systems: an overview. Pest Management Science, 2008, 64, 366-371.	1.7	81
85	Dormancy, germination and ageing of Lolium multiflorum seeds following contrasting herbicide selection regimes. European Journal of Agronomy, 2008, 28, 606-613.	1.9	31
86	<i>Neotyphodium</i> endophyte infection frequency in annual grass populations: relative importance of mutualism and transmission efficiency. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 897-905.	1.2	87
87	HERBIVORY MEDIATES GRASS–ENDOPHYTE RELATIONSHIPS: COMMENT. Ecology, 2008, 89, 3542-3545.	1.5	3
88	Evolution of Glyphosate-Resistant Johnsongrass (<i>Sorghum halepense</i>) in Glyphosate-Resistant Soybean. Weed Science, 2007, 55, 566-571.	0.8	71
89	Morphological and growth responses to water stress of two sub-populations of Bromus pictus from soils with contrasting water availability. Revista Chilena De Historia Natural, 2006, 79, 65.	0.5	8
90	Effects of the Neotyphodium endophyte fungus on dormancy and germination rate of Lolium multiflorum seeds. Austral Ecology, 2006, 31, 767-775.	0.7	35

#	Article	IF	CITATION
91	Effects of Neotyphodium Fungi on Lolium multiflorum Seed Germination in Relation to Water Availability. Annals of Botany, 2006, 97, 571-577.	1.4	44
92	Fungal endophyte infection changes growth attributes in Lolium multiflorum Lam. Austral Ecology, 2005, 30, 49-57.	0.7	33
93	Poplar Afforestation Effects on Grassland Structure and Composition in the Flooding Pampas. Rangeland Ecology and Management, 2005, 58, 474-479.	1.1	23
94	Herbicide Selection of Italian Ryegrass under Different Levels of UVB Radiation. Journal of Environmental Quality, 2004, 33, 1376.	1.0	6
95	Examples Help Demonstrate the Mechanisms Underlying the Development of Solutions. Ecology and Society, 2003, 7, .	0.9	0
96	Editorial: Seed Microbiome Research. Frontiers in Microbiology, 0, 13, .	1.5	4