List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8734480/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clarification of the Dynamic Autothermal Thermophilic Aerobic Digestion Process Using Metagenomic Analysis. Microbiology Spectrum, 2022, , e0056122.	1.2	1
2	Application of autothermal thermophilic aerobic digestion as a sustainable recycling process of organic liquid waste: Recent advances and prospects. Science of the Total Environment, 2022, 828, 154187.	3.9	5
3	Reduction in Greenhouse Gas Emission from Seedless Lime Cultivation Using Organic Fertilizer in a Province in Vietnam Mekong Delta Region. Sustainability, 2022, 14, 6102.	1.6	11
4	Metaâ€fermentation system with a mixed culture for the production of optically pure <scp>l</scp> ″actic acid can be reconstructed using the minimum isolates with a simplified pH control strategy. Biotechnology Journal, 2021, 16, e2100277.	1.8	6
5	Lab-scale autothermal thermophilic aerobic digestion can maintain and remove nitrogen by controlling shear stress and oxygen supply system. Journal of Bioscience and Bioengineering, 2021, 132, 293-301.	1.1	7
6	Host factors that shape the bacterial community structure on scalp hair shaft. Scientific Reports, 2021, 11, 17711.	1.6	7
7	Methane production from food waste via mesophilic anaerobic digestion with ethanol pre-fermentation: Methanogenic pathway and microbial community analyses. Bioresource Technology, 2020, 297, 122450.	4.8	18
8	Relationship between the bacterial community structures on human hair and scalp. Bioscience, Biotechnology and Biochemistry, 2020, 84, 2585-2596.	0.6	5
9	Nonâ€carbon loss longâ€ŧerm continuous lactic acid production from mixed sugars using thermophilic Enterococcus faecium QU 50. Biotechnology and Bioengineering, 2020, 117, 1673-1683.	1.7	10
10	Transcriptome profile of carbon catabolite repression in an efficient l-(+)-lactic acid-producing bacterium Enterococcus mundtii QU25 grown in media with combinations of cellobiose, xylose, and glucose. PLoS ONE, 2020, 15, e0242070.	1.1	3
11	Biobutanol Production Using High Cell Density Fermentation in a Large Extractant Volume. International Journal of Renewable Energy Development, 2020, 9, 431-437.	1.2	2
12	Mode and Structure of the Bacterial Community on Human Scalp Hair. Microbes and Environments, 2019, 34, 252-259.	0.7	17
13	Smart fermentation engineering for butanol production: designed biomass and consolidated bioprocessing systems. Applied Microbiology and Biotechnology, 2019, 103, 9359-9371.	1.7	32
14	Dynamics of Microbial Populations Responsible for Biodegradation during the Full-Scale Treatment of Palm Oil Mill Effluent. Microbes and Environments, 2019, 34, 121-128.	0.7	15
15	Highly efficient continuous acetone–butanol–ethanol production from mixed sugars without carbon catabolite repression. Bioresource Technology Reports, 2019, 7, 100185.	1.5	11
16	Semi-hydrolysate of paper pulp without pretreatment enables a consolidated fermentation system with in situ product recovery for the production of butanol. Bioresource Technology, 2019, 278, 57-65.	4.8	16
17	Dynamic bacterial community changes in the autothermal thermophilic aerobic digestion process with cell lysis activities, shaking and temperature increase. Journal of Bioscience and Bioengineering, 2018, 126, 196-204.	1.1	12
18	A Unique Autothermal Thermophilic Aerobic Digestion Process Showing a Dynamic Transition of Physicochemical and Bacterial Characteristics from the Mesophilic to the Thermophilic Phase. Applied and Environmental Microbiology, 2018, 84, .	1.4	11

#	Article	IF	CITATIONS
19	Impact of Land-use Change on Vertical Soil Bacterial Communities in Sabah. Microbial Ecology, 2018, 75, 459-467.	1.4	14
20	Semi-hydrolysis with low enzyme loading leads to highly effective butanol fermentation. Bioresource Technology, 2018, 264, 335-342.	4.8	24
21	Novel biobutanol fermentation at a large extractant volume ratio using immobilized Clostridium saccharoperbutylacetonicum N1-4. Journal of Bioscience and Bioengineering, 2018, 126, 750-757.	1.1	15
22	Amycolatopsis silviterrae sp. nov., isolated from forest soil. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 1455-1460.	0.8	7
23	Terminal restriction fragment length polymorphism profiling of bacterial flora derived from single human hair shafts can discriminate individuals. Legal Medicine, 2017, 25, 75-82.	0.6	13
24	Bacterial community shift for monitoring the co-composting of oil palm empty fruit bunch and palm oil mill effluent anaerobic sludge. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 869-877.	1.4	25
25	Enhancement of acetone-butanol-ethanol fermentation from eucalyptus hydrolysate with optimized nutrient supplementation through statistical experimental designs. Renewable Energy, 2017, 113, 580-586.	4.3	9
26	Ecological distribution of extremely thermophilic bacteria belonging to the genus Calditerricola using the novel enrichment MPN-PCR method. Journal of Bioscience and Bioengineering, 2017, 124, 559-563.	1.1	2
27	Novel multifunctional plant growth–promoting bacteria in co-compost of palm oil industry waste. Journal of Bioscience and Bioengineering, 2017, 124, 506-513.	1.1	24
28	Development of a systematic feedback isolation approach for targeted strains from mixed culture systems. Journal of Bioscience and Bioengineering, 2017, 123, 63-70.	1.1	6
29	Enhancement of l -lactic acid production via synergism in open co-fermentation of Sophora flavescens residues and food waste. Bioresource Technology, 2017, 225, 159-164.	4.8	40
30	A novel probiotic <i>Bacillus siamensis</i> B44v isolated from Thai pickled vegetables (<i>Phak-dong</i>) for potential use as a feed supplement in aquaculture. Journal of General and Applied Microbiology, 2017, 63, 246-253.	0.4	50
31	Novel pH control strategy for efficient production of optically active l -lactic acid from kitchen refuse using a mixed culture system. Bioresource Technology, 2016, 216, 52-59.	4.8	31
32	Unique hyper-thermal composting process in Kagoshima City forms distinct bacterial community structures. Journal of Bioscience and Bioengineering, 2016, 122, 606-612.	1.1	24
33	Highly efficient <scp>l</scp> -lactic acid production from xylose in cell recycle continuous fermentation using Enterococcus mundtii QU 25. RSC Advances, 2016, 6, 17659-17668.	1.7	40
34	Simultaneous production of l-lactic acid with high optical activity and a soil amendment with food waste that demonstrates plant growth promoting activity. Journal of Bioscience and Bioengineering, 2016, 122, 105-110.	1.1	22
35	High acetone–butanol–ethanol production in pH-stat co-feeding of acetate and glucose. Journal of Bioscience and Bioengineering, 2016, 122, 176-182.	1.1	23
36	Stillage reflux in food waste ethanol fermentation and its by-product accumulation. Bioresource Technology, 2016, 209, 254-258.	4.8	23

#	Article	IF	CITATIONS
37	New application of <i>Bacillus</i> strains for optically pure <scp>l</scp> -lactic acid production: general overview and future prospects. Bioscience, Biotechnology and Biochemistry, 2016, 80, 642-654.	0.6	43
38	l-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss. Journal of Bioscience and Bioengineering, 2016, 121, 89-95.	1.1	43
39	Pyrosequencing analysis of microbial community and food-borne bacteria on restaurant cutting boards collected in Seri Kembangan, Malaysia, and their correlation with grades of food premises. International Journal of Food Microbiology, 2015, 200, 57-65.	2.1	16
40	Enterococcus faecium QU 50: a novel thermophilic lactic acid bacterium for high-yield l-lactic acid production from xylose. FEMS Microbiology Letters, 2015, 362, 1-7.	0.7	40
41	Direct starch fermentation to l-lactic acid by a newly isolated thermophilic strain, Bacillus sp. MC-07. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 143-149.	1.4	19
42	Metabolic analysis of butanol production from acetate in Clostridium saccharoperbutylacetonicum N1-4 using ¹³ C tracer experiments. RSC Advances, 2015, 5, 8486-8495.	1.7	30
43	Feasibility of acetone–butanol–ethanol fermentation from eucalyptus hydrolysate without nutrients supplementation. Applied Energy, 2015, 140, 113-119.	5.1	46
44	Discrimination among individuals using terminal restriction fragment length polymorphism profiling of bacteria derived from forensic evidence. International Journal of Legal Medicine, 2015, 129, 425-433.	1.2	15
45	Fermentative production of lactic acid from renewable materials: Recent achievements, prospects, and limits. Journal of Bioscience and Bioengineering, 2015, 119, 10-18.	1.1	234
46	Fed-batch fermentation for enhanced lactic acid production from glucose/xylose mixture without carbon catabolite repression. Journal of Bioscience and Bioengineering, 2015, 119, 153-158.	1.1	66
47	Recent advances to improve fermentative butanol production: Genetic engineering and fermentation technology. Journal of Bioscience and Bioengineering, 2015, 119, 1-9.	1.1	175
48	Thermotolerant Bacillus kokeshiiformis sp. nov. isolated from marine animal resources compost. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 2668-2674.	0.8	18
49	Isolation of thermophilic l-lactic acid producing bacteria showing homo-fermentative manner under high aeration condition. Journal of Bioscience and Bioengineering, 2014, 117, 318-324.	1.1	19
50	<scp>l</scp> -(+)-Lactic acid production by co-fermentation of cellobiose and xylose without carbon catabolite repression using Enterococcus mundtii QU 25. RSC Advances, 2014, 4, 22013-22021.	1.7	29
51	Innovative studies on lactic acid bacteria for the new industries . Japanese Journal of Lactic Acid Bacteria, 2014, 25, 155-165.	0.1	0
52	Recent advances and future prospects for increased butanol production by acetoneâ€butanolâ€ethanol fermentation. Engineering in Life Sciences, 2013, 13, 432-445.	2.0	71
53	Improved lactic acid productivity by an open repeated batch fermentation system using Enterococcus mundtii QU 25. RSC Advances, 2013, 3, 8437.	1.7	54
54	A novel production process for optically pure l-lactic acid from kitchen refuse using a bacterial consortium at high temperatures. Bioresource Technology, 2013, 146, 672-681.	4.8	51

#	Article	IF	CITATIONS
55	Efficient butanol production without carbon catabolite repression from mixed sugars with Clostridium saccharoperbutylacetonicum N1-4. Journal of Bioscience and Bioengineering, 2013, 116, 716-721.	1.1	45
56	Continuous butanol fermentation from xylose with high cell density by cell recycling system. Bioresource Technology, 2013, 129, 360-365.	4.8	69
57	Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances, 2013, 31, 877-902.	6.0	758
58	Novel high butanol production from lactic acid and pentose by Clostridium saccharoperbutylacetonicum. Journal of Bioscience and Bioengineering, 2012, 114, 526-530.	1.1	30
59	Development of high-speed and highly efficient butanol production systems from butyric acid with high density of living cells of Clostridium saccharoperbutylacetonicum. Journal of Biotechnology, 2012, 157, 605-612.	1.9	34
60	Membrane-assisted extractive butanol fermentation by Clostridium saccharoperbutylacetonicum N1-4 with 1-dodecanol as the extractant. Bioresource Technology, 2012, 116, 448-452.	4.8	45
61	Efficient Homofermentative <scp>l</scp> -(+)-Lactic Acid Production from Xylose by a Novel Lactic Acid Bacterium, <i>Enterococcus mundtii</i> QU 25. Applied and Environmental Microbiology, 2011, 77, 1892-1895.	1.4	75
62	Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits. Journal of Biotechnology, 2011, 156, 286-301.	1.9	447
63	Isolation and characterisation of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo l-(+)-lactic acid. Applied Microbiology and Biotechnology, 2011, 89, 1039-1049.	1.7	61
64	Continuous d-lactic acid production by a novelthermotolerant Lactobacillus delbrueckii subsp. lactis QU 41. Applied Microbiology and Biotechnology, 2011, 89, 1741-1750.	1.7	102
65	Efficient conversion of lactic acid to butanol with pH-stat continuous lactic acid and glucose feeding method by Clostridium saccharoperbutylacetonicum. Applied Microbiology and Biotechnology, 2010, 87, 1177-1185.	1.7	55
66	Kinetic modeling and sensitivity analysis of xylose metabolism in Lactococcus lactis IO-1. Journal of Bioscience and Bioengineering, 2009, 108, 376-384.	1.1	25
67	Kinetic study of substrate dependency for higher butanol production in acetone–butanol–ethanol fermentation. Process Biochemistry, 2008, 43, 1452-1461.	1.8	78
68	Kinetic modeling and sensitivity analysis of acetone–butanol–ethanol production. Journal of Biotechnology, 2007, 131, 45-56.	1.9	118
69	Novel high-efficient butanol production from butyrate by non-growing Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) with methyl viologen. Journal of Bioscience and Bioengineering, 2007, 104, 238-240.	1.1	102
70	High production of acetone–butanol–ethanol with high cell density culture by cell-recycling and bleeding. Journal of Biotechnology, 2005, 120, 197-206.	1.9	124
71	High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method. Journal of Bioscience and Bioengineering, 2004, 98, 263-268.	1.1	178