
Matthew D W Piper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8734479/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dietary restriction and lifespan: adaptive reallocation or somatic sacrifice?. FEBS Journal, 2023, 290, 1725-1734.	2.2	7
2	Amino acid quality modifies the quantitative availability of protein for reproduction in Drosophila melanogaster. Journal of Insect Physiology, 2022, 139, 104050.	0.9	20
3	Target of Rapamycin Drives Unequal Responses to Essential Amino Acid Depletion for Egg Laying in Drosophila Melanogaster. Frontiers in Cell and Developmental Biology, 2022, 10, 822685.	1.8	6
4	Maternal and paternal sugar consumption interact to modify offspring life history and physiology. Functional Ecology, 2022, 36, 1124-1136.	1.7	2
5	A dietary sterol trade-off determines lifespan responses to dietary restriction in Drosophila melanogaster females. ELife, 2021, 10, .	2.8	43
6	Effects of Short-Term Dietary Protein Restriction on Blood Amino Acid Levels in Young Men. Nutrients, 2020, 12, 2195.	1.7	5
7	Restriction of essential amino acids dictates the systemic metabolic response to dietary protein dilution. Nature Communications, 2020, 11, 2894.	5.8	71
8	Sexual dimorphism in the nutritional requirement for adult lifespan in <i>Drosophila melanogaster</i> . Aging Cell, 2020, 19, e13120.	3.0	33
9	Transgenerational Obesity and Healthy Aging in Drosophila. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1582-1589.	1.7	8
10	Branched-chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nature Metabolism, 2019, 1, 532-545.	5.1	207
11	Sex-specific transcriptomic responses to changes in the nutritional environment. ELife, 2019, 8, .	2.8	45
12	Tissue-specific transcriptome profiling of Drosophila reveals roles for GATA transcription factors in longevity by dietary restriction. Npj Aging and Mechanisms of Disease, 2018, 4, 5.	4.5	37
13	Drosophila as a model for ageing. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2707-2717.	1.8	165
14	Using Mouse and Drosophila Models to Investigate the Mechanistic Links between Diet, Obesity, Type II Diabetes, and Cancer. International Journal of Molecular Sciences, 2018, 19, 4110.	1.8	22
15	2,5-Dimethyl-Celecoxib Extends <i>Drosophila</i> Life Span via a Mechanism That Requires Insulin and Target of Rapamycin Signaling. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, glw244.	1.7	17
16	Nutritional Programming of Lifespan by FOXO Inhibition on Sugar-Rich Diets. Cell Reports, 2017, 18, 299-306.	2.9	53
17	Matching Dietary Amino Acid Balance to the In Silico-Translated Exome Optimizes Growth and Reproduction without Cost to Lifespan. Cell Metabolism, 2017, 25, 610-621.	7.2	137
18	Using artificial diets to understand the nutritional physiology of Drosophila melanogaster. Current Opinion in Insect Science, 2017, 23, 104-111.	2.2	36

MATTHEW D W PIPER

#	Article	IF	CITATIONS
19	Both overlapping and independent mechanisms determine how diet and insulin-ligand knockouts extend lifespan of Drosophila melanogaster. Npj Aging and Mechanisms of Disease, 2017, 3, 4.	4.5	8
20	Editorial overview: Molecular physiology: Insect nutrition beyond energy. Current Opinion in Insect Science, 2017, 23, viii-x.	2.2	0
21	Sex and genotype effects on nutrient-dependent fitness landscapes in <i>Drosophila melanogaster</i> . Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20172237.	1.2	38
22	Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biology, 2017, 15, e2000862.	2.6	251
23	Protocols to Study Aging in Drosophila. Methods in Molecular Biology, 2016, 1478, 291-302.	0.4	66
24	Nuclear hormone receptor DHR96 mediates the resistance to xenobiotics but not the increased lifespan of insulin-mutant <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1321-1326.	3.3	46
25	QuantiFly: Robust Trainable Software for Automated Drosophila Egg Counting. PLoS ONE, 2015, 10, e0127659.	1.1	28
26	A holidic medium for Drosophila melanogaster. Nature Methods, 2014, 11, 100-105.	9.0	291
27	Using Doubly-Labeled Water to Measure Energy Expenditure in an Important Small Ectotherm Drosophila melanogaster. Journal of Genetics and Genomics, 2014, 41, 505-512.	1.7	5
28	Target of rapamycin signalling mediates the lifespan-extending effects of dietary restriction by essential amino acid alteration. Aging, 2014, 6, 390-398.	1.4	50
29	Analysing variation in <i><scp>D</scp>rosophila</i> aging across independent experimental studies: a metaâ€analysis of survival data. Aging Cell, 2013, 12, 917-922.	3.0	27
30	Detrimental Effects of RNAi: A Cautionary Note on Its Use in Drosophila Ageing Studies. PLoS ONE, 2012, 7, e45367.	1.1	24
31	Dietary Restriction and Aging: A Unifying Perspective. Cell Metabolism, 2011, 14, 154-160.	7.2	162
32	Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature, 2011, 477, 482-485.	13.7	574
33	Dietary restriction delays aging, but not neuronal dysfunction, in Drosophila models of Alzheimer's disease. Neurobiology of Aging, 2011, 32, 1977-1989.	1.5	43
34	Ageing in Drosophila: The role of the insulin/Igf and TOR signalling network. Experimental Gerontology, 2011, 46, 376-381.	1.2	255
35	Water-independent effects of dietary restriction in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, E54-E56.	3.3	10
36	Quantification of Food Intake in Drosophila. PLoS ONE, 2009, 4, e6063.	1.1	202

MATTHEW D W PIPER

#	Article	IF	CITATIONS
37	Chemical changes in aging Drosophila melanogaster. Age, 2009, 31, 343-351.	3.0	6
38	Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature, 2009, 462, 1061-1064.	13.7	654
39	Effect of a Standardised Dietary Restriction Protocol on Multiple Laboratory Strains of Drosophila melanogaster. PLoS ONE, 2009, 4, e4067.	1.1	96
40	Pitfalls of measuring feeding rate in the fruit fly Drosophila melanogaster. Nature Methods, 2008, 5, 214-215.	9.0	34
41	Separating cause from effect: how does insulin/IGF signalling control lifespan in worms, flies and mice?. Journal of Internal Medicine, 2008, 263, 179-191.	2.7	138
42	Evidence for lifespan extension and delayed age–related biomarkers in insulin receptor substrate 1 null mice. FASEB Journal, 2008, 22, 807-818.	0.2	487
43	Diet and Aging. Cell Metabolism, 2008, 8, 99-104.	7.2	201
44	Dietary Restriction in Drosophila: Delayed Aging or Experimental Artefact?. PLoS Genetics, 2007, 3, e57.	1.5	128
45	Optimization of Dietary Restriction Protocols in Drosophila. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 1071-1081.	1.7	262
46	Evolutionary conservation of regulated longevity assurance mechanisms. Genome Biology, 2007, 8, R132.	13.9	173
47	Transcriptional responses ofSaccharomyces cerevisiaeto preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures. FEMS Yeast Research, 2007, 7, 604-620.	1.1	78
48	Comment by Matthew Piper, William Mair, Linda Partridge on Min, K.J., Flatt, T., Kulaots, I., Tatar, M. (2006) "Counting calories in Drosophila dietary restriction―Exp. Gerontology, doi:10.1016/j.exger.2006.10.009. Experimental Gerontology, 2007, 42, 253-255.	1.2	8
49	Coordinated multitissue transcriptional and plasma metabonomic profiles following acute caloric restriction in mice. Physiological Genomics, 2006, 27, 187-200.	1.0	109
50	Diet, metabolism and lifespan in Drosophila. Experimental Gerontology, 2005, 40, 857-862.	1.2	93
51	Dietary restriction in Drosophila. Mechanisms of Ageing and Development, 2005, 126, 938-950.	2.2	304
52	Calories Do Not Explain Extension of Life Span by Dietary Restriction in Drosophila. PLoS Biology, 2005, 3, e223.	2.6	442
53	Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3105-3110.	3.3	734
54	Counting the Calories: The Role of Specific Nutrients in Extension of Life Span by Food Restriction. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2005, 60, 549-555.	1.7	73

MATTHEW D W PIPER

#	Article	IF	CITATIONS
55	Directed Evolution of Pyruvate Decarboxylase-Negative Saccharomyces cerevisiae , Yielding a C 2 -Independent, Glucose-Tolerant, and Pyruvate-Hyperproducing Yeast. Applied and Environmental Microbiology, 2004, 70, 159-166.	1.4	188
56	Prolonged Maltose-Limited Cultivation of Saccharomyces cerevisiae Selects for Cells with Improved Maltose Affinity and Hypersensitivity. Applied and Environmental Microbiology, 2004, 70, 1956-1963.	1.4	56
57	Identification of a Novel One-carbon Metabolism Regulon in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 7072-7081.	1.6	30
58	Comparative genotyping of the laboratory strains S288C and CEN.PK113-7D using oligonucleotide microarrays. FEMS Yeast Research, 2003, 4, 259-269.	1.1	50
59	Identification and Characterization of Phenylpyruvate Decarboxylase Genes in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2003, 69, 4534-4541.	1.4	164
60	The Genome-wide Transcriptional Responses of Saccharomyces cerevisiae Grown on Glucose in Aerobic Chemostat Cultures Limited for Carbon, Nitrogen, Phosphorus, or Sulfur. Journal of Biological Chemistry, 2003, 278, 3265-3274.	1.6	292
61	Reproducibility of Oligonucleotide Microarray Transcriptome Analyses. Journal of Biological Chemistry, 2002, 277, 37001-37008.	1.6	208
62	Regulation of the yeast glycine cleavage genes is responsive to the availability of multiple nutrients. FEMS Yeast Research, 2002, 2, 59-71.	1.1	9
63	Regulation of the yeast glycine cleavage genes is responsive to the availability of multiple nutrients. FEMS Yeast Research, 2002, 2, 59-71.	1.1	23
64	Regulation of the Balance of One-carbon Metabolism inSaccharomyces cerevisiae. Journal of Biological Chemistry, 2000, 275, 30987-30995.	1.6	91
65	Control of Expression of One-carbon Metabolism Genes ofSaccharomyces cerevisiae Is Mediated by a Tetrahydrofolate-responsive Protein Binding to a Glycine Regulatory Region Including a Core 5â€2-CTTCTT-3â€2 Motif. Journal of Biological Chemistry, 1999, 274, 10523-10532.	1.6	15